
Pre-training Summarization Models of Structured Datasets
for Cardinality Estimation

Yao Lu, Srikanth Kandula, Arnd Christian König, Surajit Chaudhuri
Microsoft

project-iris@microsoft.com

ABSTRACT

We consider the problem of pre-training models which convert

structured datasets into succinct summaries that can be used to

answer cardinality estimation queries. Doing so avoids per-dataset

training and, in our experiments, reduces the time to construct

summaries by up to 100×. When datasets change, our summaries

are incrementally updateable. Our key insights are to use multiple

summaries per dataset, use learned summaries for columnsets for

which other simpler techniques do not achieve high accuracy, and

that analogous to similar pre-trained models for images and text,

structured datasets have some common frequency and correlation

patterns which our models learn to capture by pre-training on a

large and diverse corpus of datasets.

PVLDB Reference Format:

Yao Lu, Srikanth Kandula, Arnd Christian König, Surajit Chaudhuri.

Pre-training Summarization Models of Structured Datasets for Cardinality

Estimation. PVLDB, 15(3): 414 - 426, 2022.

doi:10.14778/3494124.3494127

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

http://yao.lu/iris.

1 INTRODUCTION

We consider using dataset summaries to quickly and approximately

answer cardinality estimation (CE) queries. There is substantial

prior work [15, 16, 20, 21, 26, 28, 42–44] on this problem especially

in the context of query optimizers (QO). In practical systems, the

state-of-the-art is to use histograms [36] and sketches [21].

Recent works learn dataset-specific models to answer CE queries

[27, 34, 39, 45, 50, 51]. Training these models is costly since some

require thousands of training examples for each dataset; each train-

ing example is a (predicate, cardinality) pair obtained from history

or computed over the dataset. Moreover, these models do not evolve

with the dataset; when rows are appended or edited, the models

must be retrained [27]. The large cost to build (and, when needed,

retrain) these models makes data ingestion an expensive operation,

especially on databases that host many relations. In this work, we

seek to answer CE queries efficiently without per-dataset training.

We also note that today’s query optimizers make hundreds of CE

calls to optimize a query [41]; some prior learned models need a few

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494127

Figure 1: Illustrating some frequency and correlation pat-

terns; for datasets in Table 4, we show heat-plots with the

axes corresponding to the ranges of two columns and point

darkness indicating joint frequency.

milliseconds per CE call aided by a GPU [39, 51]. In this work, we

seek to provide CE well within a millisecond without GPUs. Doing

so allows the technique to be used in practical database servers.

Inspired by similar models of images and text documents (e.g.,

ResNet[32] and BERT [24], respectively), we seek to pre-train mod-

els which convert any previously unseen dataset into summaries

that in turn can be used to answer CE queries. Pre-training on a

large corpus of datasets, intuitively, is feasible because there are

common patterns in the frequency and correlation distributions of

multi-attribute datasets [22, 24]. Figure 1 shows patterns in some

column pairs from real-world datasets.

(a) Provider

(b) User

GPU

Many images, text,
structured data

Data
Encoder

Summary

Task
Decoder

GPU

GPU GPU

CPU
New data w/

ad-hoc schema

Pre-trained
Encoder

Pre-trained
Decoder

BERT, Iris, ..

Pre-training

Pre-processing

P
red

iction

(Query)

..
..

..

Lab
el &

 Loss

NN, SVM, ..

(vec. of floats)

(Loss)

Figure 2: Building and applying pre-trained models. Iris pro-

vides off-the-shelf models for structured datasets.

Our solution, Iris1, consists of an encoder that applies a learned

function on each input row, a summary that is a linear function

over the encoder outputs, and a decoder that answers queries using

1short for Incrementable Representations of multi-dImensional Sets

Table 1: Quantization and normalization are necessary to train and apply a model on diverse inputs: note that capturing the

diversity of structured datasets is more complex than the corresponding case of image and text datasets.

Images Text (word model) Structured data

Data size Arbitrary (# pixels) Arbitrary (# words) Arbitrary (# rows)
Data unit Pixel = 3 RGB octets Word from a known vocabulary Row has multiple # columns of varying types and sizes

Normalization Resize to W×H pixels Avg over sections, each w/ 𝑛 words padded w/ white-space See §4 for details
Quantization Not needed Tokenize into ∈ [0, 𝑣𝑡] using word-to-vec See §4 for details

Input to ML model W×H×3 octets 𝑛 log2 𝑣𝑡 See §4 for details
Order dependence Sensitive to pixel location Sensitive to word location Independent of row order

Correlation Pixel co-occurrence Word co-occurrence Multi-dimensional correlation

the summary. As shown in Figure 2, a model provider pre-trains

summarization models once, offline, over a large corpus of struc-

tured datasets. The models apply off-the-shelf on a new dataset

without further training; we will show that Iris builds summaries

quickly and that the summaries are small, can be queried efficiently,

and provide accurate cardinality estimates.

To be incrementally updateable, Iris constrains the space of sum-

marization models to only be simple linear functions per row. But

can such simple functions deliver accurate cardinality estimates

when using only small summaries? Moreover, structured datasets

have a rich variety in schema, frequency distributions and correla-

tions; can we pre-train models that generalize across such a rich va-

riety? One key insight that we use in Iris is simple in hindsight: cap-

turing correlation between column pairs, triples etc. suffices when

(1) most predicates use only a few columns or (2) low-dimensional

correlations may approximate well the higher-dimensional rela-

tions; our results will show that this holds often in practice. Hence,

Iris maintains multiple summaries per dataset – one for each cor-

related column subset and uses a novel scheme to quantize low-

dimensional columnsets of arbitrary schemas into fixed-size vectors.

Our pre-trained models transform these fixed-size vectors into sum-

maries of a given size. We also apply model selection to decide how

best to summarize a given set choosing between histograms, sparse

representations and learned Iris summaries.

We are unaware of any pre-trained models that summarize struc-

tured datasets. BERT and ResNet [24, 32] are the closest analogues.

Some sketches [15, 16, 21, 28] apply incrementally per row and can

answer CE queries quickly but the functions to encode rows and

decode answers are defined by experts whereas Iris uniquely learns

these functions from data. Some prior works also use multiple sum-

maries [23, 30, 47]; Iris is novel in its use of learned summaries and

different types of summaries for different columnsets.

In summary, our work has the following contributions:

• We show how to pre-train and use summarization models in-

cluding (1) pre-training Iris encoders to generate summaries, and

(2) pre-training Iris decoders that answer CE queries using the

summaries. The summaries can be incrementally computed or

updated and all models execute efficiently using SIMD on a CPU.

• A pre-processor that takes as input a relation and determines

which column subsets to jointly summarize and which summa-

rization method to use per column subset. Doing so crucially lets

us support relations with many columns and ad-hoc schemas

using a small number of models. The pre-processor also reduces

storage and computation costs for pre-training.

• For cardinality estimation, we compare Iris with sampling, his-

tograms, and state-of-the-art methods that learn a model for each

dataset [27, 34, 37, 50, 51]. Over various datasets and predicates,

results show that Iris offers a similar or better accuracy at a small

storage budget while substantially reducing the latency to build

summaries compared to the ML-based counterparts.

2 OVERVIEW OF IRIS

In this section, we discuss the scope of Iris, our goals, and key

aspects of how we build and use summaries.

Scope: Iris supports queries which can be represented as:

SELECT COUNT(*) FROM 𝑇
WHERE 𝑙1 ≤ Col1 ≤ 𝑢1 AND . . . 𝑙𝑖 ≤ Col𝑖 ≤ 𝑢𝑖 . . .,

where𝑇 is a table and column Col𝑖 can be of numeric or categorical

types. Equality, one-sided predicates and predicates over a subset

of columns also belong in the above class.2 Some generalizations

also follow directly, e.g., using multiple calls for disjunctions.

This scope is largely similar to prior ML-based CE [27, 34, 37, 50,

51] but we note some key aspects: Iris does not support joins unlike

some prior works [34, 37]; Iris supports categorical columns but

some prior works do not [27, 37] and finally group-by’s and other

relational operations are not supported by any of these works.

Requirements: Iris seeks to improve CE accuracy within the con-

straints of today’s production database systems, i.e., use summaries

that are about as large as the per-column histograms that are main-

tained by production databases today and respond to CE calls in

about as much time as used by production cardinality estimators

without GPUs. Also, importantly, Iris aims to reduce the costs to

build summaries by using models that are pre-trained offline and

Iris’s summaries should be incrementally updateable.

Many recent works that train a model per dataset [27, 37, 51] do

not update incrementally. Even on the other aspects, our results will

show that prior works do not provide pareto improvements [42];

e.g., better accuracy typically requires more storage, or a longer

estimation latency or a higher construction cost. Prior works require

tens to hundreds of minutes to train a model per dataset [27, 34, 39,

51], build models as large as tens of MBs [39, 51] and take a few

milliseconds per cardinality estimate using a GPU [39]. In contrast,

a CE call takes 0.1-1ms [27] in today’s production databases without

GPUs. Moreover, the memory footprint to store summaries and

the build costs per dataset will pose a large burden on production

servers which host thousands of datasets.

Summarization challenges and solutions: Pre-training sum-

marization models for datasets poses some novel challenges:

2For equality, set 𝑙𝑖 = 𝑢𝑖 ; for one-sided ranges, set 𝑙𝑖 = min(Col𝑖) or𝑢𝑖 = max(Col𝑖) ;
for columns that are not in the predicate, set 𝑙𝑖 = minCol𝑖 and 𝑢𝑖 = maxCol𝑖 .

Figure 3: Using multiple summaries and choosing different

techniques for different columnsets.

First, image and text models [24, 32] are sensitive to the context

and location of a pixel or a word but, since structured datasets are

multi-sets, row order should have no effect on the dataset sum-

maries. In Iris, summaries are a simple linear function per-row:
1
|𝑆 |

∑
𝑠∈𝑆 𝜓 (𝑠), where 𝜓 is a learned function for each row 𝑠 in a

multi-set 𝑆 . It is easy to see that such summaries are mergeable and

updateable.𝜓 can apply incrementally and in parallel over different

data subsets while using a small memory footprint.

Next, to generalize to diverse inputs, ML models must convert

arbitrary datasets (or images or documents) into fixed-size vectors

that a learned function can apply over (see Table 1). We find that

quantizing structured datasets is more complex than images and

text [31] because summarization models must handle tables with

different numbers of rows, different schemas and columns with

different ranges and distinct counts. We discuss our method in §3.3.

Third, jointly summarizing columns that are either uncorrelated

or only weakly correlated wastes space and computation. Hence,

we leverage prior work [35] to identify low-dimensional correlated

column subsets and maintain multiple summaries: one for each

correlated column subset. Doing so offers more accurate cardinality

estimates compared to a single summary over all columns at a

given storage or computational budget. Using multiple summaries

also lowers training complexity by balancing generalization and

specification; we neither train a single summarization model for

all schemas (which, due to the richness of schemas, will require

a very large model or has high error) nor do we train a different

model for each possible schema (which will require training too

many models). Instead, we train a small number of summarization

models and use them to accommodate a wide variety of relations.

Finally, we use model selection to decide how best to summarize

each columnset (e.g., least error in CE at a given resource budget)

because we find that histograms and sparse representations are

better suited than learned summaries for some columnsets.

Pre-training overview: With Iris, a model provider uses a large

corpus of datasets to pre-train a few different Iris models which

are parameterized by the input size (i.e., the number of bits that

a column set is quantized into) and the output size (i.e., the size

of the summary). The pre-training cost amortizes over the many

datasets that the same pre-trained model can be used for.

Overview of summarizing a new dataset: As shown in Figure 3,

we first identify columnsets that are correlated (§3.1) because jointly

summarizing the values of such columnsets leads to more suc-

cinct summaries and more accurate answers for predicates over

the columnsets. We prefer to jointly summarize columnsets which

have fewer columns and high correlation between columns. Next,

we apply a simple model selection process to pick the appropriate

summarization technique (§3.2) for each columnset from among a

few different methods including multi-d histograms, sparse repre-

sentations and Irismodels. Intuitively, we pick the simplest method

that can achieve good accuracy given a storage budget and only

use the learned Iris models when simpler methods do not provide

accurate CE. Thus, effectively, we maintain a bag of summaries per

dataset and each column is covered by at least one summary.

Estimating cardinality using a bag of summaries is not trivial

because the predicate columns can be covered in more than one

summary. Consider a case where summaries exist for {Col1, Col2}

and {Col2, Col3} and the predicate is 𝑝1 ∧ 𝑝2 ∧ 𝑝3; here 𝑝𝑖 is a
predicate on Col𝑖 . We have two choices: evaluate 𝑝1 ∧ 𝑝2 on the

former multi-column summary and 𝑝3 on the latter or evaluate 𝑝1
on the former and 𝑝2 ∧ 𝑝3 on the latter. It is unclear which choice

would result in a more accurate estimate. We use a heuristic which

preferentially uses summaries that cover more correlated columns

and is cognizant of imprecision in the cardinality estimates (§3.4).

3 DATA SUMMARIZATION

Here, we discuss how to bring our CE solution to bear on an arbi-

trarily wide table; we defer discussing the training and use of Iris

models to §4. In §3.1, we discuss the correlation analyses which

determines which column subsets to jointly summarize. In §3.2,

we discuss the model selection process which identifies an appro-

priate summarization technique for each column subset. In §3.3,

we discuss the quantization and normalization that we use before

building summaries. Finally, §3.4 discusses how we estimate the

cardinality of a given query predicate using a bag of summaries.

Table 2 summarizes the notations used in this paper.

A
C

E

B
D

0.9

0.7
0.8

0.8

0.3

0.3

Budget = 4 summaries

A
C

E

B
D

= 2

A
C

E

B
D

= 3

Figure 4: Choosing columnsets to jointly summarize. Left:

each node is a column and edge widths denote correlation

scores. Middle and right: two greedy choices.

3.1 Picking column subsets to summarize

A table with 𝑑 columns has 2𝑑 − 1 column subsets; thus, jointly

summarizing every subset is expensive (in terms of storage and

compute) and may record redundant information. For example,

columns that are independent of others can be summarized in-

dividually. Our goal is to capture as much of the inter-column

correlations as possible given resource constraints.

We use CORDS [35] to analyze correlations between columns of

a dataset. CORDS uses a small sample3 to estimate themean-square

contingency between a pair of columns. We implement CORDS and

compute the mean-square contingency value between all column

pairs which we call correlation scores.

Using these pairwise correlation scores, we pick column subsets

to summarize as follows: on a graph where columns are nodes and

edges are weighted based on the correlation score, pick a clique

3a few thousand rows picked uniformly at random and independent of the table size

Table 2: Notations used in the paper.

Notation Meaning

𝑛,𝑑 Row and column counts in the relation.
𝜅 Clique size in correlation analysis (§3.1).

𝜖0, 𝜖1, 𝜖2 Cutoffs used in model selection (§3.2).
ℓ Size of quantized vector and the input to a summarization model.
𝜂 Size of an Iris summary.
𝑞() Quantization func. to replace column value with identifier (§3.3).
𝜉 Max. size (#bits) of a column’s quantized value (§3.3).
𝜓 Pre-trained summarization model (§4).

𝜙𝑐 , 𝜙𝑟 Learned column and row embeddings in the Iris encoder (§4.1).
𝜙1, 𝜙2, 𝜙3 Learned functions in the Iris decoder (§4.1).

of no more than 𝜅 nodes which has the largest normalized edge

weight of all such cliques. While storage budget remains, for each

picked clique, we build a multi-column summary and remove all

of the picked edges before proceeding to pick a new clique. All

columns that remain un-picked when storage space is used up are

summarized using 1-d histograms. Figure 4 shows an example.

Our results will show that the above logic is a good trade-off

between storage size, model training costs and the ability to capture

multi-column correlations which affect the accuracy of cardinal-

ity estimates. Note that a column may appear in more than one

summary. Estimates of higher dimensional correlations, if available,

will improve our choice of which columnsets to jointly summa-

rize; however computing these estimates with a small sample is

non-trivial and orthogonal to our work and so we only use the

pair-wise correlations estimated by CORDS [35]. Note also that

the complexity of the above logic is 𝑂 (𝑑𝜅+1) given constant 𝜅. To
keep costs small, we use 𝜅 = 2 unless otherwise specified; that is,

Iris builds summaries only for column pairs. Summarizing larger

columnsets can use less storage or improve accuracy but incurs

higher model training cost (due to more parameters); as we will

show in our experiments, summaries of column pairs suffice for

Iris to offer good results on a large collection of datasets (Table 5)

including those that have higher dimensional correlations. We will

also show that summaries can be small (e.g., each is below 1KB)

and the overall storage budget is also small (e.g., between 0.5× to

2× of the storage space used to maintain summaries in today’s

production systems).4

3.2 Model selection for summarization

For each column subset chosen above, we determine how to sum-

marize so as to achieve accurate cardinality estimates. Recall that

every column appears in at least one summary. Our model selection

process below executes on the same samples used by CORDS above

and is based in part on the correlation score 𝑠𝑘 of column subset 𝑘
and the number of distinct values #DV𝑘 .

5

Sparse We use a sparse representation when #DVk < 𝜖0; that is,
record a set of tuples (𝑟,𝑚) where 𝑟 is a distinct row and𝑚
is the frequency with which 𝑟 occurs in the dataset.

AVI If 𝑠𝑘 < 𝜖1, we assume that the columns are nearly indepen-

dent and only use per-column histograms.

Hist If 𝑠𝑘 ∈ [𝜖1, 𝜖2], we maintain a multi-d histogram.

Iris For all of the other cases, we maintain Iris summaries.

4Most systems maintain 1-d histograms per column [5, 6, 8].
5For simplicity, we approximate #DV𝑘 with the number of non-zero buckets in the 2-d
histogram that CORDS builds when computing the correlation score for columnpair 𝑘 .

Algorithm 1: Assign quantization budget to columns

Input :𝑑 columns, ℓ bits for quantization, 𝐻𝑖 estimate of #DVs in column 𝑖 ,
𝜉 max #buckets that can be allocated on a column.

Output :T = {𝑡 𝑗 }, 𝑗 = 1 . . . 𝑑, denotes 𝑡 𝑗 bits assigned to column 𝑗 ;
∑
𝑡 ≤ ℓ .

1 𝑇 ← {1} × 𝑑 ;

2 Let Acc(𝑥) ← 1 − 0.5
2𝑥+1

;

3 while
∑
𝑡 < ℓ do

4 𝑗 ← 𝑎𝑟𝑔max
𝑖 :2𝑡𝑖+1<min(Hi, 𝜉)

(Acc(𝑡𝑖) + 𝜖H𝑖) ;

5 𝑗 ← 0 if 𝑗 undefined;
6 𝑡 𝑗 ← 𝑡 𝑗 + 1 // allocate next quantization bit to column 𝑗 ;
7 end

Intuitively, the above process uses the simplest summary that

can achieve desired accuracy given a storage size; in particular,

we use Iris summaries only when other simpler methods are not

appropriate. In more detail, when a column pair has very few dis-

tinct rows (below 𝜖0), the sparse representation explicitly stores all

frequencies and offers perfect selectivity estimates. We choose 𝜖0
based on the per-summary size. Next, for column pairs that have

modest correlation, we use a multi-d histogram6 which offers more

accurate selectivity estimates. We use Iris for all of the remaining

cases; that is, when the column sets are correlated and have a larger

number of distinct rows.

Figure 5: Range predicates (in blue) incur an uncertainty of

a half of a bucket’s width (region in orange) on average.

3.3 Quantization for rows

For models to generalize, as noted in Table 1, we must quantize

inputs into fixed-size vectors. For example, images of different kinds

are converted to a fixed number of pixels [32]. Quantizing datasets

is a challenge because we must convert each row into a fixed-size

vector regardless of the ranges, types and distinctness of column

values. Some prior works use one-hot encoding [37, 45] to train

models per-dataset which does not generalize to unseen schemas.

Our quantization method assigns to each column a certain number

of buckets and then replaces column values with the index of the

bucket that contains the value. If the desired size of the quantized

vector is ℓ bits, then the product of the number of buckets assigned

to each column must be 2ℓ ; the key is how best to allocate buckets

among the columns so as to reduce quantization error. Our method

is shown in Algorithm 1. Our insight is that, under certain simpli-

fying assumptions,7 the quantization error for a column which we

estimate as the expected cardinality error on a range-predicate is as

shown on line #2 of Algorithm 1. Figure 5 illustrates this for some

examples; when a column is assigned 𝑥 bits, each bucket occupies
1
2𝑥 ’th of the range and the expected relative accuracy on range

predicates is 1 − 0.5
2𝑥 . Building on this idea, in line #4, Algorithm 1

greedily allocates each bit to the column that is most likely to im-

prove the accuracy of range predicates; here, 𝐻𝑖 is an estimate of

distinct count in column 𝑖; 𝐻𝑖 can be obtained at a low cost using

6We reuse ideas from §3.3 to pick the boundaries for the multi-d histogram so as to
optimize accuracy given a storage budget.
7frequency distribution is uniform over distinct values, all columns are equally likely
to appear in range predicates etc.

Algorithm 2: CE with possibly overlapping summaries

Input :Query 𝑞, bag of summaries B = {(C𝑖 , S𝑖) }
Output :Estimated cardinality card.

1 ∀𝑖, D𝑖 ← C𝑖 ∩ ColsOf (𝑞) // columns in both summary and predicate

2 Relevant summaries, R ← {𝑏𝑖 ∈ B |D𝑖 ≠ ∅};

3 For 𝑏𝑖 ∈ R, sel𝑖 , vprec𝑖 ← Eval(Si,Adjust(q, Si,Di)) ;

4 card← 1; covcols← ∅;

5 for 𝑏𝑖 in ascending order of vprec𝑖 , sel𝑖 , |D𝑖 − covcols | do

6 ŝel𝑖 ← Eval(S𝑖 ,Adjust(q, Si,Di − covcols))

7 card← card ∗ŝel𝑖
8 covcols← covcols ∪ D𝑖

9 end

GEE estimates [18] over the CORDS samples (§3.1) or by querying

HLL sketches maintained by production systems [6, 8, 9]. We defer

some details of Algorithm 1 such as how we compute the bucket

boundaries for each column to [7]. This algorithm can improve

by using the actual frequency distribution and/or knowledge of

the range predicates in the workload but, as we will show in our

experiments, Algorithm 1 is simple, fast and already quite useful.

3.4 CE using a bag of summaries

Given a bag of summaries constructed for different column pairs,

how to estimate the cardinality of a query predicate? The challenge

here is that the predicate columns can be covered by more than one

summary. Consider an example where summaries exist for {Col1},

{Col2} and {Col1, Col2}, the last being a multi-column summary.

For a predicate over columns {Col1, Col2}, intuitively, using the

multi-column summary would lead to a more accurate answer

since this summary encodes correlations between the columns.

Now consider a more complex case where summaries exist for {C1,

C2}, {C3, C4}, {C1, C3} and {C2, C4} and a predicate that uses all

four columns. There are many choices here including using just

the first two summaries or just the last two summaries but which

of these choices would lead to a more accurate answer? Optimizing

directly for accuracy is non-trivial because it is unclear how to

relate accuracy to the information that is available to make this

choice (i.e., the summaries and correlation scores between columns).

Our heuristic approach, shown in Algorithm 2, preferentially uses

summaries that are more precise, cover more predicate columns,

and is cognizant of imprecision in the cardinality estimates.

Considering Algorithm 2 in more detail, in line#2, we pick sum-

maries that cover at least one of the predicate columns. In line#3,

we compute the selectivity from each picked summary. Since a

summary may contain some but not all of the predicate columns,

Adjust() picks clauses in 𝑞 that use at least one column covered by

the summary; furthermore, for any summary column not covered

by these clauses, Adjust() adds a clause from the minimum to the

max value of that column. The Eval() function in line#3 evaluates

the adjusted predicate on each summary, and we discuss this fur-

ther in §4.2. The latency of an Eval call is in micro-seconds and

multiple calls can execute in parallel. In line#3, we also estimate the

precision variance (vprec) based on the model that generates each

cardinality estimate; specifically, we assess sparse representations,

histograms and Iris summaries as generating estimates with preci-

sion variance 0, 1 and 2 respectively where lower value indicates

better precision variance. We also lazily evaluate the summaries

that have higher precision variance (such as Irismodels) only when

the more precise and faster summaries such as sparse representa-

tions do not cover all of the predicate columns. Finally, we assemble

the combined cardinality estimate in lines#5–#8 by iterating over

the relevant summaries in ascending lexicographic order of prec𝑖 ,

sel𝑖 and |D𝑖 − covcols|; the last term prefers summaries that cover

columns not covered by previous summaries. We will show that

the overall CE latency is sub-millisecond so that production query

optimizers can use Iris without increasing the overall QO latency.

4 TRAINING AND USING IRISMODELS

We describe how to train and use the learned summarization models

in four parts – how to summarize a rowset (§4.1), how to update

the summaries used by Iris (§4.3), how to answer a cardinality

estimation query using a summary (§4.2), and how to train the

summarization models (§4.4). Table 2 shows our notation.

4.1 Using Irismodels to summarize a rowset

The summary of a multiset 𝑆 which consists of 𝑛 rows each having

𝑑 columns is defined as:

S �
1

𝑛

∑
𝑠∈𝑆

𝜓 (𝑠) where (1)

𝜓 (𝑠𝑖) � 𝜙𝑟
(
Reorder

([
𝜙𝑐

(
𝑞(𝑐1𝑖)

)
, . . . , 𝜙𝑐

(
𝑞(𝑐𝑑𝑖)

)]))
. (2)

Here,𝜓 is a learned model that is computed by:

(1) using the quantization function 𝑞, discussed in §3.3, to replace

the value of each column with an identifier,

(2) applying a learned function 𝜙𝑐 on each column’s identifier,

(3) reordering the results by the number of bits assigned to the

corresponding column, and

(4) applying another learned function 𝜙𝑟 on the resulting vector

to generate a new vector.

The top left part of Figure 6 illustrates these steps. We call 𝜙𝑐 and
𝜙𝑟 the column and row embedding functions respectively. Recall

that quantization converts each column into at most 𝜉 bits and

each row to ℓ bits; hence, 𝜙𝑟 takes ℓ bits as input and outputs at

most 𝜂 bits which is the size of the summary (Table 2). Reorder

achieves a form of schema invariance since regardless of where a

column may be in the schema of the relation, the most distinctive

columns will appear at the same input position for 𝜙𝑟 . Note that
the summary (Equation 1) is a sum over row computations and

is independent of the order of input rows. Adding or removing

rows, and hence updating a row’s contents, are local incremental

operations;𝜓 need only apply on the rows that change. Hence, it is

easy to see that the above method is parallelizable per row.

Model choice: We use shallow NNs as shown in Table 3 to repre-

sent the 𝜙𝑟 and 𝜙𝑐 functions and learn them end-to-end. 𝜙𝑐 is an
embedding layer [4] and 𝜙𝑟 is a few fully connected layers followed

by non-linear activation. By applying only on quantized vectors,

we transform arbitrary structured data into a known universe; prior

work [52] proves that such functions can succinctly encode sets

wherein each element is drawn from a known universe.

Observe thatwe use the same per-column function on all columns

and the same per-row function on rows from any dataset; doing

so keeps pre-training costs (#parameters) small and is crucial to

Column 1 Column 2 Column d

..

()

()

…
Element-
wise add

D
at

a
su

m
m

ar
y

(S
)

Row embeddings

Input each row to encoder, parallelizable
Query predicate

Element-
wise product

Encoder

Decoder

…

Quantize

Cell embedding

()

Quantize

Cell embedding

()

Quantize

Cell embedding

()

Quantize

Cell embedding

()

Quantize

Cell embedding

()

Quantize

Cell embedding

()

N
or

m
al

iz
e

[,..,]

[,..,]..
..

..

..

[,..,]

[,..,]

..

Eval()

Figure 6: Expanding on Figure 2, the workflow of how we use pre-trained Iris models to summarize datasets (encoder above)

and to estimate the cardinality of query predicates (decoder below).

Table 3: Model specifications. We show embedding (E) and

fully connected layers (FC) with input → output #neurons.

Layer 𝜙𝑐 𝜙𝑟 𝜙1 𝜙2 𝜙3
1 E: 𝜉 × 64 FC: 64𝑑 → 𝜂 FC: 𝜂 → 𝜂 FC: 2𝜂 → 𝜂 FC: 𝜂 → 64
2 - ELU ELU ELU ELU
3 - dropout:0.3 dropout:0.3 dropout:0.3 dropout:0.3
4 - - - - FC: 64 → 1

generalize to unseen datasets. Normalization, in Equation 1, simply

divides the total over all rows by the number of rows (𝑛).

Parameter choice: How to pick appropriate values of ℓ (the ef-
fective quantized size of a columnset) and 𝜂 (the size of the output

of 𝜙𝑟 and the size of the summary)? We will show results in §5 for

different values of these parameters which represent a trade-off

between training complexity, storage overhead and accuracy. Intu-

itively, the larger these values are, the larger is the summary and the

model size (e.g., the number of parameters in the learned function

𝜙𝑟), resulting in a larger training overhead. At the same time, larger

values allow more aspects of the underlying frequency and multi-

column correlations to be captured, resulting in potentially better

summaries but also a higher chance of overfitting. Our findings

in §5 show that using small models, Iris can achieve comparable or

better accuracy compared to alternate techniques.

Intuition: We believe that the per-column and per-row functions,

𝜙𝑐 and 𝜙𝑟 respectively, capture intra- and inter-column characteris-

tics.When learningword embeddings, the analogous characteristics

are word frequency and co-occurrence probabilities (e.g., how often

‘VLDB’ and ‘SIGMOD’ co-occur). As is the case with other learned

models [27, 37, 38], today’s model explanation techniques do not

allow us to precisely understand what the learned functions capture.

Focusing on summarizing small quantized columnsets, we believe,

is key to training well because there are fewer kinds of frequency

and correlation patterns in this narrower case than if were to aim to

summarize arbitrary relations that can be of any schema and have

any numbers of columns. We believe that using learned models

to only summarize columnsets for which other simpler methods

such as histograms do not offer good accuracy also helps by further

reducing the kinds of patterns that the pre-trained summarization

models must capture. Some other works use a similar insight to

decompose complex functions into a few wavelets [48], local sparse

codes [40] or to apply compressed sensing [13]. Finally, similar to

BERT [24] and ResNet [32], we pre-train our summarization models

on thousands of columnsets extracted from a diverse corpus and

use augmentations to further improve variety. We believe each of

these aspects is crucial to achieve good accuracy with pre-trained

summarization models.

4.2 Answering queries over Iris summaries

For a two-sided predicate 𝑝 = [𝑝𝑙 , 𝑝ℎ], i.e.,
∧
𝑖 𝑝
𝑖
𝑙
≤ 𝑐𝑖 ≤ 𝑝𝑖

ℎ
, its

cardinality estimate using summary S is computed as:

Eval(S, 𝑝) � 𝜙3 (𝜙1 (S) � 𝜙2 ([𝜓 (𝑝𝑙),𝜓 (𝑝ℎ)])) , (3)

where � denotes an element-wise product. In words, we apply three

learned models– 𝜙1, 𝜙2 and 𝜙3– on the dataset summary as well as

on𝜓 (𝑝) as shown in Figure 6 bottom.

Latency: We implement Eval calls using SIMD on server-class

CPUs and show in §5.2.4 that the latency with Iris is comparable to

that of production estimators.

Intuition: Equation 3 can be thought of as learning a multi-

attribute CDF whose value is the fraction of rows that fall in-

between two input points. Importantly, here, the input is a summary

of the multi-set instead of the actual relation; using only the sum-

mary makes the function easier to evaluate. Also, intuitively, using

the same summarization function𝜓 on the the low and high values

of the predicate 𝑝𝑙 , 𝑝ℎ is appropriate since doing so projects each

predicate to the same space as the dataset rows; 𝜙2 further trans-
forms these two predicate embeddings into a single vector of the

same dimensionality as the data summary. Our choice of neural

structures– specifically, 𝜙1, 𝜙2, 𝜙3 and a dot product to combine

with the encoded predicate– resembles structures that work well

in question answering and dialog systems [12, 52].

4.3 Incrementally handling dataset changes

Iris handles inserts, deletes and changes to the rows in a relation

as follows: if multi-set 𝑆 with 𝑛 rows has a learned summary S,

adding or deleting a row 𝑠𝑖 or changing 𝑠𝑖 to a new value 𝑠 𝑗 leads to

the following summaries:
𝑛S+𝜓 (𝑠𝑖)
𝑛+1 ,

𝑛S−𝜓 (𝑠𝑖)
𝑛−1 and S +

𝜓 (𝑠 𝑗)−𝜓 (𝑠𝑖)
𝑛

respectively where𝜓 is the encoder function from Equation 2 and

Column 1 Column 2 Column
0 0 0 0.21

0 0 1 0

..

0 0 0.33

..

0

El
em

en
t-

w
is

e
ad

d

Encoder

…
()

…

Input table S = {s} Quantize {<r, m>}

()

()

..

..

..

..

..

..

..

N
or

m
al

iz
e

 T

o
de

co
de

r

ψ(S)= Σ (s)= Σkmk (rk)

Figure 7: A portion of the training pipeline for Irismodels.

Figure 6. We incrementally update the other summaries that Iris

uses in the obvious way – specifically, for the per-column or per-

column pair histograms (noted as AVI andHist respectively), bucket

boundaries do not change and bucket frequencies increase or de-

crease as needed; for Sparse summaries, which record frequencies

of the frequent tuples, we update the frequencies and add/drop the

least frequent tuple if necessary to stay within storage size. Note

that we use the same method in §4.2 to answer queries over updated

datasets; Equation 3 applies on the updated summary S.

4.4 Pre-training Irismodels

Iris’ learned models resemble a conditional auto-encoder [12]; the

summarization models are encoders which convert large tables

into succinct summaries and the models that compute cardinal-

ity estimates over these summaries are conditional decoders which

output the cardinality (fraction of rows that match a predicate,

see Equation 3). Iris learns these models end-to-end in the normal

way [31]. Specifically, the training corpus consists of a large num-

ber of columnsets and corresponding to each a large number of

query predicates and their cardinality. In each training epoch, we

pick a batch of columnsets and queries and, after applying the en-

coder and decoder models, compute gradients to update the models.

The loss function is

log true card.

est. card.

.Table 3 describes aspects of the
functions to be learned; we use fully connected layers followed by

exponential linear unit (ELU) activation [19].

Corpus: We pre-train Iris models over the datasets listed in Ta-

ble 4 and test on the hold-out datasets shown in Table 5. The

datasets contain a rich variety of multi-column correlations, col-

umn types and distributions of distinct counts and frequency. From

each dataset, we randomly pick columnpairs and generate two-

sided predicates to pre-train by (1) picking the lower and upper

ends of each predicate clause uniformly at random, (2) picking a

midpoint and width for each predicate clause uniformly at random,

(3) sampling the midpoint from data and uniformly distribute the

width or (4) exponentially distribute the width. Note that these

datasets and predicates subsume and extend those considered in

prior works [27, 34, 39, 45, 51]. Overall, we use 30K distinct colum-

npairs to pre-train Iris models.

Different inputs for training: Recall from §3.3 and §4.2 that

we quantize each table row and the query predicate into a fixed

size input because the learned models require fixed size inputs. We

require an additional normalization for training because, the entire

dataset is the training input rather than individual rows. To convert

entire datasets into a fixed size, since each quantized row occupies

at most ℓ bits, we represent an entire dataset by appending to each

Table 4: Datasets to pre-train Iris. R: real, C: categorical.

Name #cols #rows #DV Name #cols #rows #DV

R/C 𝑛 min/med/max R/C 𝑛 min/med/max

Higgs 28/0 11M 3/7K/290K KDD99 34/5 5M 2/89/14K
SUSY 19/0 5M 2/1M/2.1M PRSA 16/2 430K 5/645/35K
Gasmeth 18/0 4.2M 10/15K/18K Retail 5/3 410K 32/4K/20K
Gastemp 20/0 3.8M 4K/9K/4M Covtype 10/9 580K 67/456/6K
hepmass 29/0 3.5M 2/742K/1M Sgemm 10/4 240K 58K/58K/58K
Weather 7/0 3.5M 365/1K/9K Adult 6/8 30K 16/92/22K
PAMPA2 54/0 2.9M 13/1M/2M YearPred 90/0 520K 89/.5M/.6M
HTsensor 11/0 930K 50K/.2M/.5M Power 7/0 2.1M 32/210/4K
WECs 49/0 300K .2M/.2M/.3M Census90 0/50 2.4M 2/6/2K

distinct quantized row a new column that indicates the normalized

frequency with which that row appears in the dataset (see Figure 7).

Each dataset hence translates to 2ℓ floats – one float to encode the

frequency of each distinct quantized value. The figure also shows a

subtle modification where we multiply the summary generated for

a distinct quantized row by the normalized frequency with which

it occurs. Thus, the summary becomes a weighted sum of the per-

item summaries, i.e.,𝜓 (𝑆) = 1
𝑛

∑
𝑘𝑚𝑘 ·𝜓 (𝑟𝑘), where 𝑟𝑘 is a distinct

quantized row and𝑚𝑘 is its frequency.

Adding variety: Prior works have shown that variety in the train-

ing corpus improves generalization [22, 24, 32]. To add variety

while pre-training Iris models, besides using a diverse collection of

datasets and query predicates, we use the following augmentations:

• On randomly chosen columns, transform the identifiers by

adding a random offset (i.e., id ← (id + rand)%2𝑡 𝑗), by mirror-

ing (id ← 2𝑡 𝑗 − id), or by multiplying a random factor (id ←

int(id · rand)%2𝑡 𝑗). Recall from §3.3 that column 𝑗 is allocated
𝑡 𝑗 bits and hence the quantized ids are integers in [0, 2𝑡 𝑗 − 1].

• Mixing the𝑚 vectors of different datasets from the same train-

ing batch to mimic synthetically generated datasets that are

concatenations of portions of different datasets. As a special

case, we also use random sub-portions of actual datasets.

• To the normalized frequency column, add or multiply with a

uniform random noise and then re-normalize.

Other augmentations can also be used and we will show that these

augmentations significantly improve model quality in §5.

5 EVALUATION

We evaluate Iris against state-of-the-art techniques for cardinality

estimation (CE) with the following goals.

Q1 Is it beneficial to use Iris models off-the-shelf to estimate car-

dinality on tables unseen at pre-training? Does Iris compare

favorably to state-of-the-art techniques on the accuracy and la-

tency of CE and the storage and construction costs per dataset?

Q2 We tease apart the usefulness of various aspects of Iris by com-

paring with alternates on a large number of relations.

Q3 We conduct a sensitivity analyses of Iris by sweeping values of

relevant parameters.

Q4 We measure the costs to update Iris summaries when datasets

change as well as to construct summaries in parallel.

5.1 Experiment Setup

Datasets. We use the datasets in Table 5 that are unseen during

pre-training to test cardinality estimation. Note that the tables have

rich schemas – different numbers and types of columns as well

as a variety of frequency and correlation patterns.8 Recall that

our model selection process in §3.2 uses learned models only on

some columnpairs; from among all such columnpairs across the

datasets in Table 5, we pick 16 columnpairs at random to evaluate

some aspects in more detail. In the following, we use test relation

to denote each full dataset in Table 5 as well as their projections on

the randomly picked columnpairs from these datasets.

Predicates. The testing queries used in our experiments have a

similar or larger scope than those used in prior work [27, 51]. For

each test relation, we generate query predicates as follows: first, for

a relation with 𝑑 columns, we pick 𝑑𝑝 predicate columns uniformly

at random where 𝑑𝑝 ∈ [1, 𝑑] is also picked uniformly at random.

Next, for real-valued predicate columns, we pick range predicates

whosemid-point is the value of a row sampled uniformly-at-random

and whose width is uniformly randomly sampled between the min

and max values of that column.9 For columns with categorical

values, we pick point predicates which equal the value of a row

sampled uniformly-at-random from the relation.We pick 1K queries

per full dataset and 300 for each of the 16 columnpairs.

Metrics. We measure the following metrics:

Storage used, estimated as follows: for ML-based approaches, we

count the number of floats (neurons) in the models. For histograms,

we measure the storage of all buckets. Many storage systems com-

pactly store categorical columns as dictionaries [6, 8, 9]; we assume

no extra space for such dictionaries among all baselines.

Query latency: Wemeasure the time to obtain a cardinality estimate

using one thread on a server-class machine without GPU support.

Accuracy: For each predicate, we measure the 𝑞𝜃 error defined

as: if 𝑔,𝑔 are the estimated and actual cardinalities, 𝑞𝜃 (𝑔,𝑔) =

max(
max(𝑔,𝜃)
max(𝑔,𝜃) ,

max(𝑔,𝜃)
max(𝑔,𝜃)). This is a widely-used metric [27, 37, 51]

which measures the relative error after skipping values below 𝜃 ;
we use 𝜃 = 10 similar to [27]. Per relation, we report the geometric

mean of 𝑞𝜃 over all predicates (GMQ) as well as the 95th percentile.

Intuitively, the geometric mean is more robust to outliers; a𝑞𝜃 value
of 1 + 𝑥 indicates that the relative error in cardinality estimates is

100 ∗ 𝑥%; and, perfect estimates have a value of 1.

Building costs: We measure the latency on a single CPU thread to

construct the model or summary for each relation. For methods

that learn a new model per dataset, the latency includes obtaining

the training examples and training the model. Since the pre-trained

models for BERT and ResNet are publicly available, we expect that

pre-trained summarization models for datasets will also be freely

available, e.g., from our artifact repository; hence a database admin

can directly apply these models on their datasets.

Model training metrics: We also report the costs to pre-train the

summarization models (e.g., latency, resource usage) and analyze

the cost-vs-accuracy trade-off for different training choices and

hyper-parameters.

Baselines. We compare Iris against the following baselines:

8We support all columns in these tables except the comment column in LineItem which
is a long string with a high distinctness. Recall that Iris supports both numeric and
categorical columns; strings with low distinctness are treated as categorical columns.
9width can be zero implying a point predicate.

Table 5: Datasets that are held-out or unseen in pre-training.

Table Name #Cols. #Rows #Distinct Values
Real Cat. 𝑛 min/median/max

DMV [10] 7 13 11M 2/12/200K
TPCH-LineItem [11] 11 4 6M 2/50/1.5M
Poker [25] 0 11 1M 4/10/13
IMDB-CastInfo [3] 6 1 36M 11/2.3M/26M
Airline-OnTime [2] 66 17 440K 2/130/6620

Sampling: For each test relation and given a storage size, we sample

rows uniformly at random up to the given storage size. We report

aggregate metrics over 20 trials.

Histograms from DBMS-x: We use the built-in CE estimator in a

commercial DBMS which relies on per-column histograms. We

obtain the selectivity of the predicate on each column and ac-

count for correlations using three different heuristics [27]: Attribute

Value Independence (xAVI) which assumes independence between

columns, Exponential Backoff (xEBO) which combines up to four

most-selective predicate columns with diminishing impact [27],

and taking just the minimum selectivity across per-column pred-

icates (xMinSel). Each histogram has up to 200 buckets and uses

4KB space per column.

Learned Models: We compare with four different approaches that

build models on each relation: (1) LM [27] which builds Gradient

Boosting Trees that take as input the query predicate, the xAVI,

xMinSel and xEBO estimates from DBMS-x and outputs cardinal-

ity estimates; we also compare with LM- models which are iden-

tical to LM except for using only the query predicate as the in-

put; (2) MSCN [37] which learns a more complex network over

the query predicate and existence bits on a sample; (3) Naru [51]

which builds auto-regressive models to capture marginal probabil-

ity distributions from the raw data; (4) DeepDB [34] which builds

Sum-Product Networks (SPNs) to capture the distributions and cor-

relations among different columns. Note that the latter two schemes

directly train over features from the actual dataset whereas the first

two are mostly workload-driven.

For each above technique, we use code shared by the authors. For

techniques that use training queries [27, 37], we offer as many train-

ing queries as recommended by the authors of these techniques;

training queries are generated using the same process above as the

test queries. Furthermore, to obtain models at different storage sizes,

we vary model parameters such as the number of neurons, number

of layers etc. as recommended by the authors of each technique

in personal communication. Specifically, for DeepDB, we binary

search the rdc_threshold knob; for MSCN, we use a sample that

is half of the storage budget and vary the network size; for Naru,

we use the default settings of binary input and one-hot output

encodings and vary the hidden layer sizes.

Multi-dimensional histograms:Wealso comparewith: (1) STholes [16]

which adapts the boundaries of multi-d histograms based on query

workload. We use the code shared by the authors of [16] and train

with 10K predicates generated using the same method as the test

predicates. (2) K-d tree[14] which partitions multi-dimensional data

by alternatively picking cuts on different dimensions so as to mini-

mize the frequency difference between the two cut portions. We

build k-d trees of varying depth (based on available storage budget);

each tree memorizes the cuts and the frequency at each leaf.

Table 6: Accuracy of CE at a storage budget of 1×, i.e., 4KB per column in each relation.

Dataset
Space Accuracy (= GMQ / 95th percentile) of cardinality estimates computed using different techniques
KB Sampling xAVI xMinSel xEBO Iris LM- LM[27] MSCN[37] Naru[51] DeepDB[34]

DMV 80 3.52/150.91 1.61/27.82 2.55/213.70 1.75/28.53 1.60/22.58 1.78/12.75 X 10.79/208.0 X X
TPCH-Lineitem 60 2.33/19.54 2.13/10.44 145.08/351K 51.42/6.4K 1.67/4.63 2.41/9.01 X 36.13/3.4𝐾 X X

Poker 44 1.57/20.78 1.03/1.20 518.26/7.7K 97.07/943 1.03/1.19 1.85/6.95 X 25.28/32𝐾 6.4K/401𝐾 1.14/2.0
IMDB-CastInfo 28 1.85/81.39 2.38/25.51 3.39/37.46 2.12/15.81 2.49/43.19 2.43/21.93 X 3.6𝐾 /26𝑀 X X
Airline-OnTime 332 1.28/5.50 1.30/7.22 28.54/940.07 2.84/72.80 1.33/7.51 1.55/7.59 X 3.59/407 X X

 1

 10

 100

 1000

 10000

 100000

 0.5 1 1.5 2

Bu
ild

 ti
m

e
(s

)

Total Summary size (x 1d histograms in prod.)

Iris
MSCN

LM-
Naru

DeepDB

Figure 8: Time to build summaries of different sizes on the

datasets from Table 5 (single thread; no GPU). Table 9 and

Table 10 show the one-time costs for the pre-training.

Implementation details: We train Iris models using Keras and

TensorFlow on a server with 4x Nvidia Tesla V100 GPUs, each with

16GB memory. We use 64 epochs in the training with Adam op-

timizer; each has 1280 steps with batch size 2K. Learning rate is

1𝑒−3. In addition to the summaries from §3.2, Iris also maintains per

dataset: a small sub-sample (e.g., of the CORDS input), small per-

column histograms (e.g., of the bucketization input [7]) and bucket

boundaries (see Table 8). Using these we compute an upper bound

and a lower estimate of cardinality and clip the result of Equation 3.

Since GPUs may not be available in a typical data platform, we

use CPU-only code to construct summaries and answer cardinal-

ity estimation queries. The 𝜙𝑟 and 𝜙𝑐 functions used to compute

summaries are a dictionary lookup over the row and column value

respectively; the dictionary has ℓ · 𝜂 floats and is in-memory. The

decoder, which answers CE queries, is in C++ and uses SIMD.

5.2 Efficacy of CE on entire datasets

5.2.1 Time to build summaries. Figure 8 shows that Iris is faster,

by one to two orders of magnitude, relative to prior works that

build models on each dataset. To normalize across datasets that

have different sizes, we measure the space used by summaries as a

multiple of the space that is used by production systems today. For

example, 1× storage equals the size of the per-column histograms

maintained by production systems (∼ 4KB histograms per column).

The candlesticks show the average latency to build summaries for

each of the datasets in Table 5 on a single CPU thread. Iris is faster

because pre-trained summarizing models apply on each dataset

without additional training. We note a few details. First, we defer

discussing how the latency breaks down, the effects of parallelizing

various parts and handling data updates to §5.2.3 and §5.4. Next,

Naru [51] and DeepDB [34] have fewer data points because they

successfully build models only on a few of the datasets at the given

storage sizes; the latency to obtain cardinality estimates increases

with summary size and our goal is to not adversely increase the

LM- LM DeepDB MSCN Naru Iris

1000KB 100KB 10KB =Desired

Figure 9: The relative change in accuracy (GMQ and 95 per-

centile) for different CE techniques over two simple produc-

tion baselines (Sampling and xAVI); we show summary sizes

that are 1
4×–2× of the storage used in production systems.

overall query optimization latency. Finally, Figure 8 shows the

build time for the LM- variant described in §5.1; this is an under-

estimate of the build time for the actual model LM [27] which uses

cardinality estimates from DBMS-x. We also ignore the time to find

hyperparameters to ensure that the LM, MSCN, Naru and DeepDB

models fit within the target summary size for each dataset. To sum,

using pre-trained summarization models significantly reduces the

computation needed before cardinality estimates are available.

5.2.2 Accuracy of cardinality estimates: Table 6 shows the geomet-

ric mean of 𝑞𝜃 error (GMQ) and the 95th percentile achieved on the

datasets from Table 5 when the total summary size is held equal to

the size of the 1d histograms that are maintained by production sys-

tems today. For many different summary sizes, Figure 9 depicts the

accuracy of different techniques; the corresponding detailed results

are in Table 6 and [7]. We find that techniques that learn dataset

specific models – LM, MSCN, Naru and DeepDB – are either unable

to work within the available space (marked as X in Table 6) or have

worse accuracy than sampling and xAVI. We discuss the reasons in

more detail in the next paragraph. In general, when the summary

size is large, the error caused by Sampling converges quickly [43]

and at 2× storage Sampling provides the best or close-to-best accu-

racy. Overall, these results show that Iris has comparable or better

accuracy in many configurations and, can be used alongside or as a

Table 7: Breaking down the Iris build time on different

datasets and storage budgets (in seconds, on one CPU).

Dataset DMV Airline
Storage Budget 1×(80KB) 2×(160KB) 1×(332KB) 2×(664KB)
CORDS 12.2 12.2 30.6 30.6
Iris - Quantization 6.1 7.1 9.6 10.3
Iris - Summarization 4.3 4.7 3.7 4.3
Other models 2.1 2.4 4.0 4.4
Total (s) 24.7 26.4 47.9 49.6

replacement of alternative techniques especially at small summary

sizes which translate into quick cardinality estimates.

Now, we further discuss the results from Table 6.

• Poker’s columns are mostly independent; thus, per-column his-

tograms (e.g., with xAVI) achieve good accuracy. Iris’s model

selection discerns independence and Iris only builds per-column

histograms and sparse representations for Poker (see Table 8).

Note that Iris’s per-column histograms are smaller and sim-

pler (only have frequency per bucket whereas xAVI also has

distinct counts and uses proprietary heuristics [6, 8, 9]).

• LM cannot build models at 1× summary size because the per-

column histograms it uses to compute input features (xAVI, xMin-

Sel and xEBO estimates from DBMS-x) themselves take 1× stor-

age. As the table shows, Iris outperforms LM- in three of the

five datasets including Poker where LM- is unable to discern

independence. At a 2× summary size (see [7]), LM improves over

LM- and achieves the best accuracy on Lineitem and DMV but

does not lead on other datasets.

• Naru and DeepDB are unable to build models on the examined

datasets at many summary sizes because the column embedding

and sum-product networks that they build respectively require

much larger storage [34, 51]. For example, a Naru model that

handles 13 of the 20 columns from the DMV dataset is 13MB,

162× the size of the summaries used in production systems.

• MSCN maintains samples per dataset which use up half of the

summary space and perhaps as a result the trained models have

worse accuracy than the relatively simpler LM- models.

• The CastInfo dataset requires special attention because both

LM- and Sampling outperform Iris. We find that this dataset

has stronger correlation among he columns which Iris fails to

capture well since we only summarize column pairs. To verify

this issue, we built five additional summaries on column triples

with 𝜅 = 3 using the same pre-trained models – specifically, on

every triple where all three column pairs had a high correlation

score from CORDS. The resultant bag of summaries has better

accuracy on CastInfo: the GMQ (and 95th percentile) change

from 2.49 (43.19) in Table 6 to 2.21 (29.1); the five additional

3-d summaries fit within the 1× storage budget, due to leftover

storage after the initial model selection (Table 8). Our findings

are that (a) pairwise summaries still offer a sizable improvement

because they capture the marginal correlations and (b) building

learned summaries on larger columnsets (e.g., column triples)

improves accuracy because they capture the correlation better

and avoid the imprecise combination of estimates from multiple

summaries (line#5 in Algorithm 2). Naively extending to this case

however increases pre-training costs; we leave careful choice of

summarizing larger columnsets to future work.

L M- D DepB SCCNSa rL u Ipis

Figure 10: Latency to build summaries in parallel (DMV, 1×).

27 22 20 25
35

47
35 32

40

69

53

3

41

20 22

0

20

40

60

80

DMV 1X Poker 1X Lineitem
0.5X

Lineitem
1X

Lineitem
2X

C
E

 L
at

en
cy

 (μ
s)

LM- MSCN Iris

Figure 11: Average latency in 𝜇s per card. estimate for a few

example datasets and summary sizes.

Slicing results by predicate cardinality: We see that, in general,

more selective predicates have lower accuracy to the estimates (re-

sults in [7] and analyses in [43]). The variance of sample-based

estimates increases with predicate selectivity and histogram-based

techniques are more inaccurate for predicates which fall within one

histogram bucket. Iris is competitive across the cardinality range.

5.2.3 Breaking down buildtime and parallelization: Table 7 breaks

down the total time that Iris incurs to build summaries. As the table

shows, running CORDS to assess correlation between column pairs

takes the longest amount of time. The time to quantize and summa-

rize increases slightly with storage budget since Iris can build more

summaries at larger storage budgets (see Table 8). These steps can

all be parallelized – CORDS can run in parallel per column pair and

different threads can summarize different data partitions. Figure 10

shows how the latency to build summaries changes with multiple

threads. For prior works, we find that training corpus collection

is easier to parallelize than model training; in particular, the Naru,

DeepDB codebase intertwines multiple aspects in a complex way

and are nontrivial to parallelize. As the figure shows, Iris achieves

a nearly linear reduction in latency (from ∼ 25s with one thread to

∼ 4s with eight threads).

5.2.4 Cardinality estimation latency: Figure 11 shows the average

latency to obtain a cardinality estimate from various models on

a single CPU thread; we use SIMD support where possible. Prior

work shows that cardinality estimators in production DBMS have

latency between 0.1ms to 1ms [27] depending on the complexity

of the predicate. As the figure shows, Iris and some alternatives

offer comparable latency. LM [27] is not shown in the figure but its

latency can be thought of as the latency of LM- in the figure plus

the latency to obtain additional cardinality estimates from DBMS-x

which are used as inputs by the LMmodels. Naru, DeepDB also does

not appear in Figure 11 because we could not build these models

for many of the datasets and summary sizes shown here for the

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
od

el
 s

el
ec

ti
on

 a
cc

ur
ac

y

GMQ to optimal

CORDS score + Iris model sel

CORDS score + Rnd model sel

Rnd score + Iris model sel

Rnd score + Rnd model sel

Figure 12: On Lineitem with 1× storage, for different model

selection schemes, we show their accuracy to pick sum-

maries that are within ΔGMQ (x-axis) to optimal.

Table 8: The number of column pairs which receive a partic-

ular summary type from Iris’s model selection for different

datasets and storage budgets. *including overhead per col-

umn: 0.5KB 1-d histogram, 0.125KB bucket boundaries and

0.5KB small samples (§5.1).

Dataset
Storage Max size Number of summ.
budget* per summ. Iris Sparse Hist.

DMV 80KB (1×) 2KB 15 53 0
TPCH-Lineitem 30KB (0.5×) 1KB 6 22 6
TPCH-Lineitem 60KB (1×) 2KB 6 24 17
TPCH-Lineitem 120KB (2×) 4KB 3 28 10

Poker 44KB (1×) 2KB 0 55 0
IMDB-CastInfo 28KB (1×) 2KB 1 0 5
Airline-OnTime 332KB (1×) 2KB 0 314 0

reasons that were discussed in §5.2.2; at larger summary sizes and

on other datasets, we find these models have latency in the range

of a few milliseconds as reported elsewhere [34, 51]. Such latencies

will noticeably delay query optimization time. Figure 11 also shows

that the CE latency can depend on the number of Iris summaries

used - each decoder inference takes 32𝜇s with SIMD which is 1-2

orders of magnitude slower than evaluating Hist or Sparse; since

we use larger summary sizes at a larger storage budget (Table 8), the

choices of model selection can be nuanced. In some cases (e.g., on

Poker), Iris offers much faster cardinality estimates by evaluating

only the simpler summaries (Hist or Sparse).

5.2.5 Memory footprint: The memory footprint to build Iris sum-

maries and evaluate cardinality estimates is smaller than that of

other learned models. Iris’s summaries build in one pass over the

data and the memory consumption is just the row sample used by

CORDS (§3.1) and the dictionary for 𝜙𝑟 and 𝜙𝑐 (§4.1, §5.1) which
is about a few hundred KBs. In comparison, prior learned models

must store the entire training corpus in memory and use more

memory to train models. Naru, DeepDB also keeps a large sample

of the dataset in memory to estimate the ground-truth for training

predicates. In all, we observe a footprint of a few hundred MBs

for the prior works; that is, Iris uses roughly 1000× less memory

to build summaries. To provide cardinality estimates, the memory

footprint needed is similar across all techniques (about tens of KBs

per dataset), since we explicitly equalize the summary space used

by the various techniques.

5.3 Understanding the components of Iris

5.3.1 Model Selection. Recall from §3.2 that Iris uses different tech-

niques to summarize different columnsets. Here, we evaluate the

Table 9: The error incurred by Iris (GMQ) and by quantiza-

tion (qGMQ); we also show the sizes and (pre-)training time.

Param. Size Accuracy Training
ℓ/𝜂 (B) GMQ / 95pct qGMQ / 95pct (hours)

6/- - 3.14 / 2619 -
7/- - 2.58 / 1049 -

10/32 Summary
∝ 𝜂;
Quant.

∝ 2ℓ .

1.52 / 22.45 1.82 / 109.06 17
10/64 1.62 / 63.38 1.82 / 109.06 12
10/128 1.67 / 92.46 1.82 / 109.06 14
11/128 1.46 / 11.97 1.69 / 86.51 20

Table 10: The training time and CE accuracy when pre-

training different sizes and variety of the training corpus.

Number of raw
Augmented?

Train.
ΔGMQ Δ95pct

Training relations time
3% � 20 hrs +0.16 +22.62
33% � 20 hrs +0.07 +8.07
33% × 6 hrs +0.52 +404.62
100% � 20 hrs [1.46] [11.97]

efficacy and outcomes of the selection process. Figure 12 demon-

strates model selection on Lineitem with 1× storage. Specifically,

we show the chance of picking summaries that are within a given

delta to optimal; we vary ΔGMQ on the x-axis which corresponds to

the GMQ of the picked summary minus that of the optimal choice.

Compared to using random correlation scores and/or picking sum-

marization techniques randomly, Iris appears better at model se-

lection. For example, with ΔGMQ=0 (i.e., matching optimal), Iris is

correct in 57% of the cases while randomly scoring and picking is

only correct in 32% of the cases. When Iris does not match optimal,

the difference is often small – for 82% of the choices, ΔGMQ is

below 0.1. Overall, learned summaries are best suited for 19% of

all the column pairs while 39% of the columns pairs can use AVI

without a significant accuracy degradation. To summarize, Table 8

shows the numbers and types of summaries chosen by Iris across

datasets and storage budgets.

5.3.2 Ablation study: quantization vs. summarization. We decouple

the quantization error (§3.3) in cardinality estimation from using an

Irismodel. To estimate such error, we answer cardinality estimation

queries by using a quantized version of the relation which contains

the frequency count for each distinct quantized row; an example

of this representation is the table on the left in Figure 7. Using

the quantized version, we estimate the cardinality of a two-sided

query by summing up the frequency of all tuples that fall within

the (quantized) predicates instead of using Eqn. 3. We call this

value the qGMQ. Table 9 shows the qGMQ on 16 sub-relations

of the test datasets; we see that using more bits to quantize (i.e.,

larger ℓ) reduces the quantization error but the marginal reduction

decreases. We also note that the final GMQ is smaller than qGMQ

due to the result clipping by small samples and 1-d histograms (see

implementation details in §5.1). The quantized version of a relation

is larger in size than the summaries and the learned summarization

models can be thought of as compressing 2ℓ floats to𝜂 floats;𝜂 � 2ℓ .

Smaller summaries are efficient to use and store but may add error

in cardinality estimates.

5.3.3 Effects of training with different corpuses. Table 10 shows

the training time and accuracy when pre-training summarization

models in different ways. As the table shows, training with fewer

relations and without the augmentations (§4.4) that add variety

Table 11: Comparing the accuracy when summarizing corre-

lated column pairs with different techniques; see §5.3.4.

Method GMQ/95pct
0.25KB 0.5KB

Iris 1.62 / 63.38 1.46 / 11.97
Sampling 1.93 / 391.4 1.63 / 36.02
ST-Holes 4.33/ 466.8 7.93 / 620.5
Kd-trees 8.77/ 1022 11.10 / 2017

Table 12: Accuracy of cardinality estimates when using dif-

ferent methods to handle updates to the Lineitem table (1×

summary size); see §5.4.

Method Baseline ΔGMQ / Δ95pct to baseline
No change 10% change 15% change 20% change

Ground truth 1.0 / 1.0 +0.13 / + 0.49 +0.19 / +0.78 +0.25 / +1.05
LM- do nothing 2.41 / 9.01 +0.11 / +0.40 +0.16 / +1.08 +0.21 / +2.86
Iris do nothing 1.67 / 4.37 +0.04 / +0.65 +0.07 / +0.69 +0.09 / +0.92
Iris update 1.67 / 4.37 +0.02 / +0.03 +0.04 / +0.15 +0.06 / +0.47
Iris rebuild 1.67 / 4.37 +0.01 / -0.02 +0.03 / +0.03 +0.04 / +0.36

lowers the accuracy of cardinality estimates in GMQ and especially

in tail errors. The accuracy values shown are the average over 16

sub-relations from the datasets in Table 5 and are relative to the

model trained using the values on the last row. The model training

time is similar when using more data because each training epoch is

a fixed-size batch sampled from the corpus. The models in Table 10

use hyperparameter values ℓ = 11 and 𝜂 = 128; varying the training

corpus has a similar effect on other hyperparameter values.

5.3.4 Micro-benchmarks. For 16 columnpairs picked randomly

from the test datasets, as described in §5.1, we compare Iris sum-

maries with sampling, STholes and K-d trees. Table 11 shows that,

relative to Iris, these alternatives offer worse accuracy at the same

storage budget. Thus, we believe Iris’s learned summaries are a

useful addition to our model selection process; they offer better

accuracy at small storage sizes.

5.4 How does Iris handle updates to datasets?

Table 12 shows the accuracy of cardinality estimates when different

fractions of the TPC-H Lineitem table are updated using rows

from a skewed generator (i.e., [1] with zipf=2). The table shows

results for three variants: do nothing uses unchanged summaries,

update uses summaries incrementally updated as noted in §4.3 and

rebuild constructs summaries afresh on the updated relations. As

the figure shows, incrementally updating Iris summaries leads to

substantially better accuracy compared to do nothing; the rebuild

variant is slightly better because rebuilding from scratch can revisit

model selection and use more appropriate quantization (e.g., pick

bucket boundaries based on the updated relation).

In contrast, other learned models [27, 39, 45, 51] cannot update

incrementally and their accuracy (GMQ) degrades more severely

when more updates occur; for example, the gaps of GMQ and es-

pecially tail error for LM- are more than doubled compared with

those for Iris when 20% of rows change.

On the other hand, retraining LM- on the updated relations is

as expensive as shown in §8 and Figure 8. While rebuilding Iris is

already efficient, incrementally updating Iris’s models is even faster

at roughly 1.5ns per appended row and 3ns per updated row on

one thread of a 3.5GHz desktop CPU.

5.5 Discussion and future work

Customizing pre-trained Iris models: While the pre-trained

summarization models are used off-the-shelf in our experiments,

fine-tuning the models on individual columnsets or datasets [31]

may further improve the CE accuracy. However, unlike the prior

case, the compute and storage costs for specification will not amor-

tize across different datasets.

Training efficiency and knowledge transfer. Multi-task train-

ing has been shown to be effective for BERT models [24] to train

representations end-to-end based on usefulness for different tasks.

Similar ideas can apply in the case of pre-training summarization

models; pre-training an encoder along side multiple decoders may

improve the accuracy of every task and also allow the same sum-

maries to be used for multiple applications [24]. Extending to such

scenarios can be interesting future work.

6 RELATEDWORK

Learned models for cardinality estimation: We already com-

pared with works that learn a new model per dataset [27, 37, 39, 51].

Iris uses summaries which can be considered as learning from

data [39, 51] whereas others only learn transformations from pred-

icates to cardinality [27, 37]. Iris offers several advantages (1) no

per-dataset training which reduces the time to build cardinality es-

timators, (2) building multiple summaries for different columnsets

of a dataset instead of a single model over all columns which im-

proves accuracy for the same storage space, (3) support for both

categorical and real columns, (4) using SIMD to summarize data

and estimate cardinality which achieves low latency without GPUs

and, (5) summaries that incrementally respond to data changes and

can be built in parallel per row.

Data structures for cardinality estimation: Production 1D his-

tograms [36] record frequency and distinct counts per bucket and

use proprietary algorithms to offer more accurate CE. A few works

build multiple multi-d histograms to support wide tables [23, 30];

the estimates from various histograms are combined using learned

graphical models. ST-Holes [16] which picks bucket boundaries

based on queries and refines boundaries progressively. Other works

use wavelets [29, 46], graphical models [17, 49] and kernel den-

sity estimators [33] for cardinality estimates. The key difference of

Iris is that Iris uses pre-trained summarization models and avoids

per-dataset training.

7 CONCLUSIONS

We present Iris, a cardinality estimator for multi-dimensional struc-

tured data, which decomposes wide tables into correlated column

subsets and summarizes different columnsets using different tech-

niques including novel pre-trained summarizationmodels. Uniquely,

Iris requires no per-dataset training. Our experiments show that

Iris can match the storage size and latency of production cardinality

estimators while offering similar or better accuracy, incremental up-

datability and faster summary construction time relative to methods

that train a new model for each dataset. We believe that pre-trained

summarization models of structured datasets are broadly applicable

beyond cardinality estimation.

REFERENCES
[1] [n.d.]. A new parallel data-generator for zipf-skewed TPC-H. https://bit.ly/

36cl8fc.
[2] [n.d.]. Airline dataset. https://relational.fit.cvut.cz/dataset/Airline.
[3] [n.d.]. IMDB dataset. https://https://homepages.cwi.nl/~boncz/job/imdb.tgz.
[4] [n.d.]. Keras Deep Learning Library. http://keras.io.
[5] [n.d.]. The New and Improved Cardinality Estimator in SQL Server 2014. https:

//bit.ly/2Wku8JV.
[6] [n.d.]. Oracle Histograms. https://bit.ly/37lkFsc.
[7] [n.d.]. Pre-training Summarization Models of Structured Datasets for Cardinality

Estimation: Extended Version. http://yao.lu/iris/extended.pdf.
[8] [n.d.]. Snowflake Histograms. https://bit.ly/2Lv1dkf.
[9] [n.d.]. SQL Server Histograms. https://bit.ly/2WpU1YN.
[10] [n.d.]. State of New York Vehicle, snowmobile, and boat registrations. https:

//catalog.data.gov/dataset/vehicle-snowmobile-and-boat-registrations.
[11] [n.d.]. TPC-H Benchmark. http://www.tpc.org/tpch/.
[12] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,

C Lawrence Zitnick, and Devi Parikh. 2015. Vqa: Visual question answering. In
ICCV.

[13] Richard G Baraniuk. 2007. Compressive sensing [lecture notes]. IEEE signal
processing magazine 24, 4 (2007), 118–121.

[14] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (1975), 509–517.

[15] Kevin S. Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. 2007. On synopses for distinct-value estimation under multiset opera-
tions. In SIGMOD.

[16] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidi-
mensional Workload-aware Histogram (SIGMOD).

[17] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
2000. Approximate Query Processing Using Wavelets (VLDB).

[18] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 2000.
Towards estimation error guarantees for distinct values. In Proceedings of the
nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 268–279.

[19] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[20] Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris Jermaine. 2012.
Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches. Found.
Trends databases 4 (Jan. 2012).

[21] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data Stream
Summary: The Count-min Sketch and Its Applications. J. Algorithms (2005).

[22] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[23] Amol Deshpande, Minos Garofalakis, and Rajeev Rastogi. 2001. Independence is
good: Dependency-based histogram synopses for high-dimensional data. ACM
SIGMOD Record 30, 2 (2001), 199–210.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[25] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml.

[26] Marianne Durand and Philippe Flajolet. 2003. Loglog Counting of Large Cardi-
nalities. In ESA.

[27] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates Using
Lightweight Models. Proc. VLDB Endow. 12, 9 (2019).

[28] Philippe Flajolet and G. Nigel Martin. 1985. Probabilistic Counting Algorithms
for Data Base Applications. J. Comput. Syst. Sci. (1985).

[29] Minos Garofalakis and Phillip B. Gibbons. 2002. Wavelet Synopses with Error
Guarantees (SIGMOD).

[30] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity estimation
using probabilistic models. In Proceedings of the 2001 ACM SIGMOD international
conference on Management of data. 461–472.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[33] MaxHeimel, Martin Kiefer, and VolkerMarkl. 2015. Self-Tuning, GPU-Accelerated
Kernel Density Models for Multidimensional Selectivity Estimation (SIGMOD).

[34] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2019. DeepDB: Learn from Data, not from Queries!
arXiv preprint arXiv:1909.00607 (2019).

[35] Ihab F Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. 2004.
CORDS: automatic discovery of correlations and soft functional dependencies.
In Proceedings of the 2004 ACM SIGMOD international conference on Management
of data. 647–658.

[36] Yannis Ioannidis. 2003. The History of Histograms (Abridged) (VLDB).
[37] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and

Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with
deep learning. CIDR (2018).

[38] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data. 489–504.

[39] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196 (2018).

[40] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. 2007. Efficient sparse
coding algorithms. InAdvances in neural information processing systems. 801–808.

[41] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really?. In VLDB.

[42] Beibin Li, Yao Lu, Chi Wang, and Srikanth Kandula. 2021. Cardinality Estimation:
Is Machine Learning a Silver Bullet?. In 3rd International Workshop on Applied AI
for Database Systems and Applications (AIDB).

[43] Beibin Li, Yao Lu, Chi Wang, and Srikanth Kandula. 2021. Q-error bounds of ran-
dom uniform sampling for cardinality estimation. arXiv preprint arXiv:2108.02715
(2021).

[44] Gurmeet Singh Manku and Rajeev Motwani. 2002. Approximate Frequency
Counts over Data Streams. In VLDB.

[45] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

[46] Yossi Matias, Jeffrey Scott Vitter, and MinWang. 1998. Wavelet-based Histograms
for Selectivity Estimation (SIGMOD).

[47] Kexin Rong, Yao Lu, Peter Bailis, Srikanth Kandula, and Philip Levis. 2020. Ap-
proximate partition selection for big-data workloads using summary statistics.
arXiv preprint arXiv:2008.10569 (2020).

[48] Christopher Torrence and Gilbert P Compo. 1998. A practical guide to wavelet
analysis. Bulletin of the American Meteorological society 79, 1 (1998), 61–78.

[49] Kostas Tzoumas, Amol Deshpande, and Christian S Jensen. 2011. Lightweight
graphical models for selectivity estimation without independence assumptions.
Proceedings of the VLDB Endowment 4, 11 (2011), 852–863.

[50] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2020. NeuroCard: one cardinality estimator for all tables. arXiv
preprint arXiv:2006.08109 (2020).

[51] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
unsupervised cardinality estimation. Proceedings of the VLDB Endowment 13, 3
(2019), 279–292.

[52] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R
Salakhutdinov, and Alexander J Smola. 2017. Deep sets. In Advances in neural
information processing systems. 3391–3401.

