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Abstract

In this paper, each image is viewed as a bag of local re-
gions, as well as it is investigated globally. A novel method
is developed for achieving multi-label multi-instance im-
age annotation, where image-level (bag-level) labels and
region-level (instance-level) labels are both obtained. The
associations between semantic concepts and visual features
are mined both at the image level and at the region level.
Inter-label correlations are captured by a co-occurence ma-
trix of concept pairs. The cross-level label coherence en-
codes the consistency between the labels at the image level
and the labels at the region level. The associations be-
tween visual features and semantic concepts, the corre-
lations among the multiple labels, and the cross-level la-
bel coherence are sufficiently leveraged to improve anno-
tation performance. Structural max-margin technique is
used to formulate the proposed model and multiple inter-
related classifiers are learned jointly. To leverage the avail-
able image-level labeled samples for the model training, the
region-level label identification on the training set is firstly
accomplished by building the correspondences between the
multiple bag-level labels and the image regions. JEC dis-
tance based kernels are employed to measure the similari-
ties both between images and between regions. Experimen-
tal results on real image datasets MSRC and Corel demon-
strate the effectiveness of our method.

1. Introduction

Automatic image annotation has become more and
more attractive when digital images grow exponen-
tially [17, 6]. Multiple semantic concepts (labels) may
occur simultaneously in an image, e.g., {sheep&grass},
{mountain&sky&water}, and so on. Many algorithms
have been developed to enable multi-label learning re-
cently [18, 4, 29, 9, 8, 19, 26]. On the other hand, each
individual label of one image is actually related to local
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regions rather than the global image; each region can be
viewed as an instance and the image is just a bag of in-
stances. Based on this observation, some researchers also
consider image classification as a multi-instance learning
task [15, 11, 31, 28].

In the existing joint multi-label multi-instance learning
framework, the correlations among multiple labels and the
associations between the visual features and the semantic
concepts are not exploited sufficiently to improve the an-
notation performance. For example, [15] degenerates the
multi-label multi-instance problem to several multi-instance
single-label problem, and the dependency between the im-
age labels is not modeled. Although [28] considers the
label-label correlations, these correlations are not related
with the image features. It has been shown that the ten-
dency of the semantic concepts to co-occur is usually not
independent of the image visual features [8].

In the computer vision community, it is an interesting
topic to assign labels to regions within an image. [13, 1]
conduct object recognition by learning an explicit detection
model for each label; however, they are not applicable in
many real-world applications because it is difficult to col-
lect the large scale labeled image regions per class. [10]
performs image region labeling by Multiscale CRF which
models spatial relations between labels; however, the label-
label semantic correlation is not yet captured. [16] pro-
poses a unified formulation to label-to-region assignment
as well as automatic labeling; however, the label-label cor-
relation is not effectively leveraged, either.

In this paper, a novel method for Correlative Multi-Label
Multi-Instance image annotation is proposed. The input im-
age is segmented and can be viewed as a bag of instances
(regions). The global visual features of the entire image
and the local features of the regions are extracted to cap-
ture coarse and fine patterns, respectively. For the train-
ing images, image-level labels are provided while region-
level labels are unknown. To leverage the available image-
level labeled samples for the model training, the region-
level label identification on the training set is firstly accom-
plished by building the correspondences between the mul-
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tiple image-level labels and the regions. For each test im-
age, both image-level labels and region-level labels can be
obtained in a single framework by realizing the cross-level
label propagation. Inter-label correlations are captured by
a co-occurence matrix of concept pairs. Structural max-
margin technique is used to formulate the proposed model
and multiple interrelated classifiers are learned jointly.

The proposed method takes an interesting formulation
that tries to combine various contextual relations in a single
framework. It can be investigated from different perspec-
tives: i) the associations between semantic concepts and vi-
sual features (global and local); ii) the correlations among
the multiple labels; iii) the cross-level label coherence be-
tween the labels at the image level and the labels at the re-
gion level.

The rest of this paper is organized as follows: In Section
2, we formulate the proposed model. Model learning and
inference are given in Section 3. Experimental results on
MSRC and Corel image datasets are shown in Section 4.
Finally, we conclude this paper in Section 5.

2. The Proposed Model
Let I denote the global visual feature vector extracted

from an entire image; suppose that the image is parti-
tioned into m regions through the existing segmentation al-
gorithms [2, 5, 22, 20], and let {Rr}m

r=1 denote m local
visual feature vectors extracted from the corresponding im-
age regions, where the number of regions, m, might vary
across different images. Let y = [y1, . . . ,yc] ∈ {1,−1}c

denote c−dimensional concept label vector of an image,
where yl = 1(l = 1, . . . , c) indicates that the image be-
longs to the l−th concept, and −1 otherwise. Let hr =
[hr(1), . . . ,hr(c)] ∈ {1,−1}c denote the concept label
vector of the r−th region in the image, where each entry
hr(l) ∈ {1,−1} likewise indicates the membership of this
region on the l−th concept.

Suppose that n image-level labeled samples are avail-
able {(I1, {R1

r}
m1
r=1,y

1), . . . , (In, {Rn
r }

mn
r=1,y

n)}, where
the ith image includes mi instances (i = 1, . . . , n), Ii de-
notes the global feature vector for the ith image, {Ri

r}
mi
r=1

denotes a bag of regional feature vectors for the ith image,
and yi is the associated image-level multi-label vector. The
region-level label vectors {hi

r}
mi
r=1 are unknown. The task

is to learn a discriminative model f(I,y, {Rr}, {hr}) from
the available image-level labeled samples. Then, for any
new image, the associated image-level and region-level la-
bels can be simultaneously inferred:

(ŷ, {ĥr}) = arg max
(y,{hr})

f(I,y, {Rr}, {hr}) (1)

In real world applications, multiple labels do not ap-
pear independently but occur correlatively and usually in-
teract with each other at semantic space [30]. For exam-

Figure 1. The inter-label correlation matrix based on the the har-
monic mean of empirical conditional probabilities illustrates the
interdependency between 23 concepts on the MSRC dataset. The
brighter the block is, the stronger the correlation between labels
exists.

ple, labels sheep and grass often co-occur, which can be
considered as a pair of concepts with significant correla-
tion; on the contrary, sheep and office seldom co-occur
in the same image. The inter-label correlation matrix is
constructed to characterize the interdependency between
concepts and helps to learn the inter-related classifiers in
the feature space. We can construct the inter-label cor-
relation matrix by using the available image-level labeled
samples. Suppose two labels l and t, and define empirical
conditional probabilities p(t|l) =

∑n
i=1(y

i
l+1)(yi

t+1)/4∑n
i=1(y

i
l+1)/2

and

p(l|t) =
∑n

i=1(y
i
l+1)(yi

t+1)/4∑n
i=1(y

i
t+1)/2

. Denote the harmonic mean

alt = p(t|l)p(l|t)
[p(t|l)+p(l|t)]/2 , and define the inter-label correlation

matrix as A = [alt]c×c.
As an illustration, Figure. 1 shows the inter-label cor-

relation matrix illustrating the interdependency between 23
concepts on the MSRC (MicroSoft Research Cambridge)
image dataset. The brighter the block is, the stronger the
correlation between labels exists. The dark blocks indi-
cate the concept pairs without correlations on the MSRC
dataset. It is natural that the pairs of the same concepts cor-
respond to the bright block. Among those pairs of the dif-
ferent concepts, we can find that the concept pair face and
body have the most significant correlation. As for the con-
cept road, those concepts building, tree, sky, car,bicycle
have strong correlations with it. It should be pointed out that
there seems to be weak correlation between the concepts
bird and sky; the reason for such surprising observation is
that in the MSRC dataset there are few images showing the
scene a bird flying in the sky; on the contrary, there are
quite a few images showing a bird over water or grass.
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Based on the inter-label correlation matrix, we formulate
the Correlative Multi-Label Multi-Instance Model for im-
age annotation using the structural max-margin technique
such that various contextual relations are incorporated in a
single framework:

f(I,y, {Rr}, {hr})

=η1

c∑
l=1

yl(u>l ϕ(I) + bl) + η2

c∑
l=1

m∑
r=1

hr(l)(v>l φ(Rr) + b′l)

+ η3

c∑
l=1

∑
t∈Nl

ylytw>
ltϕ(I)− η4

c∑
l=1

|yl −maxrhr(l)|

(2)

where ul, vl and wlt are the parameter vectors to be
learned, which are associated with the label l and the la-
bel pair (l, t) , respectively; bl and b′l are the bias param-
eters; ϕ(I) and φ(Rr) are the (nonlinear) functions map-
ping the input global features of the entire image and the
local features of the image region to the kernel spaces, re-
spectively; η1, η2, η3, η4(> 0) are controlling parameters;
Nl = {t|t 6= l ∧ alt > T0} denotes the set of all concepts
related with the concept l (T0 is a predefined threshold).

The first part of Eq. (2) encodes the associations between
the image-level labels and the global visual features; the
second part of Eq. (2) models the associations between the
region-level labels and the local visual features; the third
part of Eq. (2) captures the inter-label correlations depen-
dent on the image features; the last part of Eq. (2) measures
the coherence between image-level labels and region-level
labels. In multi-label multi-instance learning, for a specific
label, one bag (image) is tagged positive if there is at least
one instance (region) with the concerned label; otherwise
the bag is tagged negative. We can minimize the loss func-
tion

∑c
l=1|yl−maxrhr(l)| to maximize the coherence be-

tween image-level labels and region-level labels, and thus
realize the cross-level label propagation.

Figure. 2 illustrates the framework of the proposed cor-
relative multi-label multi-instance model for image annota-
tion: Each image is investigated globally, as well as it is
viewed as a bag of local regions, and the associations be-
tween semantic concepts and (global and local) visual fea-
tures are mined both at the image level and at the region
level; By constructing the inter-label correlation matrix, the
interdependency between concepts are modeled in the la-
bel space and the knowledge on the co-occurrence of labels
in the same image are captured; The cross-level label co-
herence encodes the consistency between the labels at the
image level and the labels at the region level.

3. Model Learning and Inference
Based on the proposed discriminative model

f(I,y, {Rr}, {hr}), we can estimate the image-

Figure 2. Our model for correlative multi-label multi-instance im-
age annotation. Each image is described by global features as well
as bag-of-regions. Various contextual relations are sufficiently
leveraged in a single framework: concept-feature associations,
inter-concept correlations, and cross-level label coherence.

level (bag-level) labels in addition to the region-
level (instance-level) labels for each image as
(ŷ, {ĥr}) = arg max(y,{hr}) f(I,y, {Rr}, {hr}).
We learn the optimal parameter vector by mini-
mizing the empirical risk on the training images
{(I1, {R1

r}
m1
r=1,y

1), . . . , (In, {Rn
r }

mn
r=1,y

n)}:

min
1
n

n∑
i=1

∆(yi, ŷi) (3)

where ∆(yi, ŷi) =
∑c

l=1 1(yi
l 6=ŷi

l)
counts the number of

labels that are incorrectly predicted for the training image
xi. Because

f(Ii, ŷi, {Ri
r}, {ĥi

r}) = max
(y,{hr})

f(Ii,y, {Ri
r}, {hr})

≥ max
{h′

r}
f(Ii,yi, {Ri

r}, {h′r})

(4)

the upper bound of ∆(yi, ŷi) can be derived as follows:

∆(yi, ŷi)

≤∆(yi, ŷi) + f(Ii, ŷi, {Ri
r}, {ĥi

r})
−max

{h′
r}

f(Ii,yi, {Ri
r}, {h′r})

≤ max
(y,{hr})

{∆(yi,y) + f(Ii,y, {Ri
r}, {hr})}

−max
{h′

r}
f(Ii,yi, {Ri

r}, {h′r})

(5)

Therefore, given the image-level labeled training set, the
proposed model can be learned by minimizing the following
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objective function:

min
u,v

1
2
(

c∑
l=1

∥∥ul

∥∥2 +
c∑

l=1

∥∥vl

∥∥2 +
c∑

l=1

∑
t∈Nl

∥∥wlt

∥∥2)

+λ

n∑
i=1

(
max

(y,{hr})
{∆(yi,y) + f(Ii,y, {Ri

r}, {hr})}

−max
{h′

r}
f(Ii,yi, {Ri

r}, {h′r})
)

(6)

where the first part is for regularization and λ is a trade-off
parameter. The objective function can also be expressed as:

min
u,v,ξ

1
2
(

c∑
l=1

∥∥ul

∥∥2 +
c∑

l=1

∥∥vl

∥∥2 +
c∑

l=1

∑
t∈Nl

∥∥wlt

∥∥2) + λ
n∑

i=1

ξi

s.t. max
{h′

r}
f(Ii,yi, {Ri

r}, {h′r})−max
{hr}

f(Ii,y, {Ri
r}, {hr})

≥ ∆(yi,y)− ξi ∀i ∈ {1, . . . , n},∀y ∈ {1,−1}c

(7)

where ξi is the slack variable.
Note that [max{h′

r} f(Ii,yi, {Ri
r}, {h′r}) −

max{hr} f(Ii,y, {Ri
r}, {hr})] can be viewed as the

margin between the ground truth labels and the prediction
at the image level, while the region-level labels {hr}
are treated as latent variables. The objective function in
(7) actually takes the form of structural SVM with latent
variables [24, 27]. However, the algorithms in [24, 27]
maintain a working set of active constraints, which leads to
complicated optimization problems [26]. Approximately,
based on the design of the proposed model, we can divide
the optimization problem into inter-related subproblems
and then learn the model more efficiently.

3.1. Learning ul and {wlt}t∈Nl

Using the available image-level labeled training samples,
we can first learn the parameter vectors ul and {wlt}t∈Nl

as follows:

min
u,ξ

1
2
(

c∑
l=1

∥∥ul

∥∥2 +
c∑

l=1

∑
t∈Nl

∥∥wlt

∥∥2) + λ

n∑
i=1

ξi

s.t. fI(Ii,yi)− fI(Ii,y) ≥ ∆(yi,y)− ξi

ξi ≥ 0
∀i ∈ {1, . . . , n},∀y ∈ {1,−1}c

(8)

where fI(I,y) = η1

∑c
l=1 yl(u>l ϕ(I) + bl) +

η3

∑c
l=1

∑
t∈Nl

ylytw>
ltϕ(I) is the image-level submodel.

There are n × 2c constraints and the optimization problem
is too complex to be solved directly. However, based on
the linear property of fI(I,y), we factor the image-level

submodel formulation as fI(I,y) =
∑c

l=1 f l
I(I,yl,yNl

),
of which each item with respect to label l is as follows:

f l
I(I,yl,yNl

) =η1yl(u>l ϕ(I) + bl) + η3

∑
t∈Nl

ylytw>
ltϕ(I)

(9)

Like [23, 26, 30], the optimization can be performed over
a single label variable while the rest are fixed, and the
learning procedure is approximately decoupled into c inter-
related subproblems. For each l ∈ {1, . . . , c},

min
u,ξ

1
2
(
∥∥ul

∥∥2 +
∑
t∈Nl

∥∥wlt

∥∥2) + λl

n∑
i=1

ξi
l

s.t. f l
I(I

i,yi
l ,y

i
Nl

)− f l
I(I

i,yl,yi
Nl

) ≥ 1(yi
l 6=yl) − ξi

l

ξi
l ≥ 0
∀i ∈ {1, . . . , n},∀yl ∈ {1,−1}

(10)

where f l
I(I

i,yi
l ,y

i
Nl

) is the partial model score based on
the observational features and the ground truth labels,
while f l

I(I
i,yl,yi

Nl
) is the partial model score based on the

observational features and the almost true labels. Since
yl,yi

l ∈ {1,−1}, there are only two cases: either yl = yi
l

or yl = −yi
l . If yl = yi

l , the constraints in (10) always
hold; so, we can only focus on the case yl = −yi

l and the
constraints in (10) can be further written as:

f l
I(I

i,yi
l ,y

i
Nl

)− f l
I(I

i,−yi
l ,y

i
Nl

) ≥ 1− ξi
l

ξi ≥ 0
∀i ∈ {1, . . . , n}

(11)

In the decoupled formulation, the model parameter vector
can be learned with ease. Although the model parameter
sub-vectors are learned label by label, the correlations be-
tween labels are still be taken into account due to the second
part of Eq. (9) which encodes the inter-label dependency;
Now, there are only n constraints in the optimization prob-
lem (10) s.t. (11) for each l, which is similar to two-class
SVM. The dual of the optimization problem is as follows:

max
αi

l

n∑
i=1

αi
l −

1
2

n∑
i=1

n∑
j=1

αi
lα

j
l y

i
ly

j
l Kij

s.t.
n∑

i=1

αi
ly

i
l = 0, λl ≥ αi

l ≥ 0,∀i ∈ {1, . . . , n}
(12)

where αi
l denotes the dual variable, and

Kij = 4(η2
1 + η2

3

∑
t∈Nl

yi
ty

j
t )ϕ

>(Ii)ϕ(Ij) (13)

Using kernel method, we define:

ϕ>(Ii)ϕ(Ij) = exp{−ρd(Ii, Ij)} (14)
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where d(Ii, Ij) is the distance between images and ρ is the
radius parameter of the Gaussian function.

Thus, the primal variable vectors ul,wlt can be com-
puted from the dual variables: ul = 2η1

∑n
i=1 αi

ly
i
lϕ(Ii),

wlt = 2η3

∑n
i=1 αi

ly
i
ly

i
tϕ(Ii).

3.2. Learning vl

Let fR({Rr}, {hr}) =
∑c

l=1

∑m
r=1 hr(l)(v>l φ(Rr) +

b′l), which is the region-level submodel of Eq. (2). Be-
cause the labels of the training samples are available only
at the image level, it is of significance to identify the ex-
act correspondences between multiple labels and the image
regions such that the label for each region is automatically
determined and the region-level submodel can be effectively
learned. Like the previous work [21], we accomplish the
region-level label identification by the clustering technique.

For each label, we employ the affinity propagation algo-
rithm [7] to cluster the image regions (in the set of positive
images and in set of the negative images, respectively) us-
ing local visual features. The region clusters derived from
the set of positive images can further be divided into two
kinds: the positive region clusters ( those regions should be
associated with the current label) and the negative region
clusters. The positive region cluster tends to be of large size
because at least one region is positive per image such that
more regions may share common visual properties for the
the current label and they are grouped into the same clus-
ter (positive cluster). The negative region clusters may have
smaller sizes because the negative regions are from differ-
ent classes. At the same time, all the region clusters derived
from the set of negative images are negative clusters. The
positive region clusters derived from the set of positive im-
ages should be far away from the negative region clusters
derived from the set of negative images. Meanwhile, the
negative region clusters derived from the set of positive im-
ages might be close to some negative region clusters derived
from the set of negative images.

Therefore, the differences between the positive region
clusters and the negative region clusters derived from the
set of positive images can be investigated from two perspec-
tives: either their similarities to the negative region clusters
derived from the set of negative images or their sizes. Thus
we can identify the positive region clusters from the nega-
tive ones, and the current label is treated as the true label for
all the image regions in the positive clusters. We can choose
all the positive regions for training. To avoid the imbalance
between positive and negative training samples, we do not
choose all the negative regions for training, but just choose
the subset of negative regions derived from the set of nega-
tive images. Now the parameter vectors vl can be learned

as follows:

min
v,ξ

1
2

c∑
l=1

∥∥vl

∥∥2 + λ
n∑

i=1

ξi

s.t.fR({Ri
r}, {hi

r})− fR({Ri
r}, {hr}) ≥ ∆({hi

r}, {hr})− ξi

ξi ≥ 0
∀i ∈ {1, . . . , n},∀hr ∈ {1,−1}c

(15)

where ∆({hi
r}, {hr}) =

∑c
l=1

∑mi

r=1 1(
hi

r(l) 6=hr(l)
). Sim-

ilar to (8), the optimization can be approximately decou-
pled into l subproblems such that the parameter vectors are
learned more effectively.

min
v,ξ

1
2

∥∥vl

∥∥2 + λ
n∑

i=1

mi∑
r=1

ξi
r

s.t. hi
r(l)(v

>
l φ(Ri

r) + b′) ≥ 1− ξi
r, ξi

r ≥ 0
∀i ∈ {1, . . . , n},∀r ∈ {1, . . . ,mi}

(16)

Likewise, we should compute φ>(Ri
r)φ(Rj

p) in dual op-
timization problems. Again, using kernel method, we de-
fine:

φ>(Ri
r)φ(Rj

p) = exp{−�d(Ri
r, R

j
p)} (17)

where d(Ri
r, R

j
p) is the distance between image regions

based on the local visual features and � is the radius pa-
rameter of the Gaussian function.

3.3. Inference

For any new image, the inference problem is to
find the optimal label configuration (ŷ, {ĥr}) =
arg max(y,{hr}) f(I,y, {Rr}, {hr}). The size of multi-
label space is exponential to the number of classes, and
it is intractable to enumerate all possible label configura-
tions to find the best one. Therefore we employ the itera-
tive approach to approximate the optimal label configura-
tion. First, we can initialize a multi-label configuration by
two steps: i) For each image region, we estimate its label
by the support vector machines derived from Eq. (16) such
that the second item in Eq. (2) is maximized; ii) The image-
level labels are initialized using the rule that one image is
tagged positive if there is at least one region with the con-
cerned label (otherwise, the image is tagged negative) such
that the last item in Eq. (2), i.e.,

∑c
l=1|yl − maxrhr(l)|,

is minimized. Then, based on the initial label configura-
tion, we employ an approximate inference technique called
Iterated Conditional Modes (ICM) [25] to estimate the
optimal image-level multi-label vector such that the sum of
the first and third items in Eq. (2) is maximized: In each iter-
ation, given yNl

, we sequentially update yl using the law:
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Figure 3. The results of our method in comparison with other related competitive algorithms in terms of F score for individual labels at the
image-level on the MSRC dataset.

Figure 4. Region-level labeling results of our method for some exemplary images from MSRC. Top: the ground truth; Bottom: our results.

if f l
I(I,yl = 1,yNl

) is larger than f l
I(I,yl = −1,yNl

)
then yl = 1; otherwise yl = −1. Furthermore, based on
the derived image-level label vector, the region-level labels
can even be refined by simultaneously maximizing the sec-
ond item while minimizing the forth item in Eq. (2) via the
Cutting P lane method [16, 12]. Alternatively, based on
the derived image-level label vector, we can also refine the
region-level labels by calculating the similarity between the
image regions and the positive clusters corresponding to the
current image-level multi-labels. Finally, the refined image-
level labels can be further inferred from the refined region-
level labels.

4. Experiments

In this section, we evaluate our method on MSRC and
Corel [3] image datasets in comparisons with other related
competitive algorithms:1) RML [18], 2) RankSVM [4], 3)
MLknn [29], and 4) TagProp [9].

We first conduct experiments on MSRC (MicroSoft Re-
search Cambridge) image dataset which is widely used in
multi-label image annotation for performance comparison.
It contains 591 images with totally 23 concepts. There

are about 3 tags on average per image. We ignore the
concepts horse and mountain since they have few posi-
tive samples. Thus there are totally 21 concepts. We ran-
domly divide the dataset into two subsets: 70% for train-
ing and 30% for testing. Global and local features are ex-
tracted for each image. For each image, we first extract
the global visual features: 12-dimensional CLD (Color Lay-
out Descriptor), 64-dimensional SCD (Scalable Color De-
scriptor), 256-dimensional CSD (Color Structure Descrip-
tor), and 80-dimensional EHD (Edge Histogram Descrip-
tor). These four kinds of visual features are used to calculate
the composite distance JEC (Joint Equal Contribution)[17]
between the images in Eq. (14). Specifically, the distances
for each kind of visual feature are first scaled to be bounded
by 0 and 1, and then are averaged such that each kind of
visual feature contributes equally towards the image sim-
ilarity. On the other hand, all images are segmented into
several regions and different kinds of local features are ex-
tracted for each region: 1) 14-dimensional color feature in-
cluding mean RGB, HSV conversion, HUE histogram and
SAT histogram; 2) 30-dimensional texture feature including
LM-filter mean response [14] and LM-filter response his-
togram; and 3) 8-dimensional geometric feature encoding
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the position and size information of the segment. Likewise,
the composite distance between image regions in Eq. (17)
is computed using JEC[17]. Although pixel-level (region-
level) ground truth is provided as well in MSRC dataset as
shown in the top row of Figure.4, only image-level ground
truth is employed for training in experiments. By clustering
the image regions with Affinity Propagation [7], and ana-
lyzing the inter-cluster similarities together with the cluster
sizes, the region-level label identification on the training set
can be automatically accomplished, which helps to train the
region-level submodel using the image-level labeled sam-
ples.

Figure.3 shows the results of our method (Ours) in com-
parison with other related competitive algorithms in terms
of F score for individual labels at the image-level. F score
is defined as the harmonic mean of precision and recall,
i.e., F = precision∗recall

(precision+recall)/2 . As observed from the re-
sults, our method achieves better performance for most
concepts, compared to the other related algorithms. Our
method simultaneously extracts global and local visual fea-
tures, and sufficiently leverages various contextual rela-
tions, which might be useful to improve the annotation per-
formance. Our method annotates not only the entire image
but also the regions within this image. Figure.4 gives some
label-to-region assignment results for test images from the
MSRC dataset produced by the proposed correlative multi-
label multi-instance model. The other methods RML [18],
RankSVM [4], MLknn [29], and TagProp [9] can not obtain
the region-level labels, but the image-level labels only.

Corel data set [3] contains 5000 images and each im-
age is labeled with 1-5 concepts and there are totally 374
concepts. We carry out the experiments on around 1000 im-
ages including ten concepts: mountain, sky, clouds, tree,
people, birds, buildings, bear, snow, rocks. 70% are
used for training and the rest 30% for testing. Again, global
and local features are extracted for each image, and JEC
distance is employed to measure the image-image similarity
and the region-region similarity. Figure.5 shows the results
of our method (Ours) in comparison with other related com-
petitive algorithms in terms of F score for individual labels
at the image-level. Figure.6 shows some label-to-region as-
signment results for test images from the Corel dataset at the
region-level. From the experimental results, the following
observations can be obtained: i) Our method performs best
on five concepts mountain, people, bear, snow, rocks; ii)
Our method achieves the comparable performance on three
concepts tree, birds, buildings; iii)The performances on
the concepts sky and clouds seem to be not satisfying. Ac-
tually, the Corel data set is a weakly labeled dataset (i.e., the
given “ground truth” labels of some images may be incom-
plete). As an example, the annotation result of our method
on the bottom-right exemplary image (i.e., the last image)
in Figure.6 includes sky but not cloud; however, the given

image-level “ground truth” includes clouds instead of sky.
The incompleteness of the available “ground truth” may im-
pact both the training efficacy and the testing evaluation.

Figure 5. The results of our method in comparison with other re-
lated competitive algorithms in terms of F score for 10 labels at
the image-level from the Corel dataset.

Figure 6. Region-level labeling results of our method for some
exemplary images from the Corel dataset.

5. Conclusions
In this paper both image-level labels and region-level la-

bels can be obtained in a single framework by capturing
the feature-label associations, the inter-label correlations,
and the cross-level label coherence. The associations be-
tween semantic concepts and visual features are mined both
at the image level and at the region level. Inter-label cor-
relations are captured by a co-occurence matrix of concept
pairs. The cross-level label coherence encodes the consis-
tency between the labels at the image level and the labels at
the region level. Structural max-margin technique is used
to formulate the proposed model. By decoupling the an-
notation task into inter-dependant subproblems, we learn
multiple interrelated classifiers jointly. In our future work,
we would investigate how to improve the annotation perfor-
mance on the weakly labeled image datasets.
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