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Abstract

While bottom-up and top-down processes have shown
effectiveness during predicting attention and eye fixation
maps on images, in this paper, inspired by the perceptual
organization mechanism before attention selection, we pro-
pose to utilize figure-ground maps for the purpose. So as
to take both pixel-wise and region-wise interactions into
consideration when predicting label probabilities for each
pixel, we develop a context-aware model based on multi-
ple segmentation to obtain final results. The MIT attention
dataset [14] is applied finally to evaluate both new fea-
tures and model. Quantitative experiments demonstrate that
figure-ground cues are valid in predicting attention selec-
tion, and our proposed model produces improvements over
baseline method.

1. Introduction
Due to the massive visual information received from the

nature world, humankind has evolved the ability of attend-
ing to what they are interested in using eye saccades so as
to reduce the complexity of visual processing [20]. Aim-
ing at the same target in the computer vision society, pre-
dicting human visual attention and eye fixations on images
has long been an open question considering its broad ap-
plications in various tasks including object detection, scene
understanding, image/video retrieval, advertisement and UI
design, etc.

Previous studies have shown that visual attention follows
two main procedures: bottom-up and top-down. Bottom-up
attention indicates that selection of visual attention depends
on low-level features (i.e. color, texture, brightness etc.) of
images, and previous works on saliency detection have done
well on this direction [13, 1, 30]. Meanwhile, top-down
attention claims that object information dominates over the
attention selection: human attend to familiar object entities
rather than regions with salient low-level features [5, 3, 14].

Some researchers have previously combined these two
mechanisms together and construct models to predict visual
attention. Cerf et al [4] build a model to mix Itti’s saliency

and a face detector, which performs much better than low-
level saliency alone. Judd et al [14] prove that low-level
saliency does not account for attention and eye fixations us-
ing eye tracking devices on human subjects. To solve this
problem, they further propose to detect cars and pedestrians
as well as horizons in their scheme, which they think are of
great interest by human observers. All these pioneer works
show the feasibility of both bottom-up and top-down cues
to predict attention maps on images.

However, recent advances in neuroscience and psychol-
ogy have revealed some other important mechanisms before
attention selection. Kimchi et al [15] show by cognition
experiments that figure-ground organization occurs before
attention selection. Qiu et al [21] also prove in brain ex-
periments that figure-ground guides the attention selection.
Hence, in this paper, we have every reason to assume that,
figural objects capture attention and eye fixations, which is
another important cue often ignored by many state-of-the-
art algorithms.

Figure-ground and perceptual organization can be traced
back to the 1920s. Many rules have been found by Gestalt
psychologists including convexity, parallelism, symmetry,
orientation, surroundedness and object familiarity etc [20].
By utilizing the bias towards figural objects of these lo-
cal cues, several previous works attempt to assign fig-
ure/ground labels for regions and contours [8, 24, 17, 16].
Hence in this paper, we focus on the applying of Gestalt
rules and exploit several local figure-ground cues, i.e. con-
vexity, symmetry and surroundedness, to predict visual at-
tention maps. Furthermore, basic bottom-up and top-down
features are also taken into consideration so as to evaluate
effectiveness of the proposed figure-ground features. When
finally predicting probabilities for each pixel in the image,
a context-aware model upon multiple segmentation is ap-
plied to further improve detection result of the baseline
model, which uses an SVM to learn weights between dif-
ferent bottom-up and top-down features.

The rest part of the paper is organized as follows. In sec-
tion 2 we introduce basic feature as well as three perceptual
cues used in our approach. Section 3 describes our model in
detail. Experiments and evaluations are introduced in Sec-



tion 4, while Section 5 ends the paper with a conclusion and
a discussion on future works.

2. Feature used to predict attention map

2.1. Basic features

Among the features used in our approach, the basic fea-
tures are much the same as that used in the baseline method
[14], so we briefly illustrate and review them here.

Low-level features. As an important cue to indicate
bottom-up attention, low-level feature saliency has been re-
searched well in the literature. Below is a list of the low-
level features used in our model.

F1. Local energy of steerable pyramid filters [29].
F2. Itti and Koch’s saliency map [13].
F3. Color (RGB values, probabilities and histograms).
F4. Torralba and Rosenholtz’s saliency [25, 19].
High-level features. Judd et al [14] consider car, pedes-

trian and face as object entities that people will draw their
eyes on, and this satisfies the top-down process of human at-
tention selection. Hence these high-level features are used:

F5. Felzenswalb’s car and pedestrian detector [7].
F6. Viola Jones’s face detector [32].
Spatial feature is another important cue to show where

the target should be and the spatial relationship between tar-
gets in images. We use:

F7. Distance to the center for each pixel.
F8. Horizon position of the image [19].

2.2. Figure-ground maps

In this paper, we put emphasis on obtaining pixel-level
probability maps of foreground objects, i.e. the figure-
ground maps. We choose three important Gestalt cues and
attempt to draw the map for each of them respectively.

2.2.1 F9. Convexity map

Convexity has long been proved as a cue to separate figu-
ral and background objects. It is shown by psychologists in
lots of experiments that, if there is a boarder line between
two neighboring regions, then the region on the convex side
tends to be foreground. Imagine the famous face-vase pic-
ture, which demonstrates a black vase in the middle and
two white faces on its two sides. In fact the borderline be-
tween the black vase and white face has the same degree
of convexity when seen from two sides, which causes the
confusion of which part is foreground in this picture.

Several previous works have utilized such useful cue for
different tasks. Fowlkes et al [8] perform ecological statis-
tics on nature images and find convexity indeed has the abil-
ity to discriminate which part is foreground. Ren et al [24]
further design a model to classify contours using convexity.

Figure 1. For a given image, multiple segmentation is calculated
and convex regions are detected on each segmentation hypothesis.
After merging all convex regions we obtain final convexity map
(right-bottom). For example in the top-right image, curves in blue
are detected concave arcs, and hence superpixels with ”*” are con-
vex regions detected. Notice superpixels with ”x” do not meet the
threshold tha for the percentage of covered area by bounding-box
of the concave arc.

Algorithm 1 Concave arc detection.
Input:
superpixel contour s (clock-wise), concave threshold thc
Steps:

1: Smooth s using B-spline curve algorithm.
2: Draw bounding-box and split s into four sections.
3: ret = φ
4: for each section do
5: Determine three main directions in sequence.
6: Find starting points of concave arc when pixel move-

ments violate main direction for more than thc steps.
7: Find ending points of concave arc when pixel move-

ments accord with main direction for more than thc
steps after string points detected.

8: arc = combination of all the pieces in this section.
9: ret = ret

⋃
arc.

10: end for
11: return ret

More recently, Lu et al [17] detect salient objects by con-
structing a multi-scale model and the cue of convexity is
used to determine weights between superpixels. In this pa-
per, in order to obtain pixel-level convexity maps for given
images, we modify their method to meet our needs.

Generally, the main idea to construct convexity map de-
scribes as follows (see Figure 1 for the flow chart):

(1) Compute multiple segmentation for a given image.
(2) For each segmentation hypothesis, find all concave arcs
using Algorithm 1 and determine convex regions. (3) Map
convex regions to pixels and add up results on different
scales to obtain final convexity map.

The key problem in this scheme is to detect concave arcs,



Figure 2. Example to detect concave arc. For the section of curve
starting from the top to the right, main directions should be right,
right-bottom and then bottom in sequence. Pixel movements of the
blue part accord with the correct order of main directions, while
pixel movements of the red part violate correct order so they are
recognized as concave arc

which is to say, given the contour of a superpixel, how to
find concave parts of the contour, meanwhile the part should
be ”concave” enough [17]. Here we illustrates the algorithm
in Algorithm 1 and Figure 2.

The usage of multiple segmentation summarizes convex-
ity on different scales and benefits the final result, which
is also applied in [12, 26]. Moreover, in our classification
model introduced in Section 3, we will once again use the
multiple segmentation result, hence no additional calcula-
tions will be made.

Once we get all the concave arcs in the multiple seg-
mentation, we draw bounding-boxes for them, within which
superpixels on the convex side are recognized as convex
regions (percentage of covered area by the bounding-box
should be greater than a threshold tha, see Figure 1 for ex-
ample). Finally, after simply adding all the convex regions
detected in the multiple segmentation to the pixel level, we
obtain the convexity map.

2.2.2 F10. Surroundedness map

Surroundedness is another Gestalt rule indicating that re-
gion surrounded by other region is likely to be foreground
[20]. It can be seen as a special case of convexity – the
whole object is convex rather than partly. Several previous
works have used this cue to detect closed contours and per-
form interactive segmentation [31, 10].

Following the same opinion as the convexity map to use
multiple segmentation, it is easy to construct a surrounded-
ness map:

(1) Compute multiple segmentation for a given image.
(2) For each segmentation, find superpixels that are fully
surrounded by other superpixels. (3) Map the found super-
pixels to pixels and add up results on different segmentation
hypotheses to obtain final surroundedness map.

Figure 3 demonstrates flow chart to obtain surrounded-
ness map.

Figure 3. Flowchart to obtain surroundedness map, which is ba-
sically similar to the detection of convexity map. In the top-right
image, rectangle in yellow is bounding-box of a fully surrounded
superpixel.

2.2.3 F11. Symmetry map

Another important Gestalt cue to do figure-ground is sym-
metry. People pay more attention to high symmetric re-
gions, and symmetry can also be used to predict center of
objects [16]. Here we apply an isotropic symmetry opera-
tor described in [16, 23] to construct a symmetry map for a
given image.

Given a point p, pi and pj are symmetric points accord-
ing to p. The local symmetry of the pixel pair is defined
as

c(i, j) = d(i, j, σ) · p(i, j) ·mi ·mj (1)

Wheremi is the magnitude of gradient at point pi, d(i, j, σ)
represents the Gaussian weighting function on the distance
between pi and pj with standard deviation σ, and

p(i, j) = (1− cos(γi + γj)) · (1− cos(γi − γj)) (2)

is the symmetry measurement where γi (γj) is the angle
between the gradient direction of pi (pj) and the connection
line between pi and pj (anti-clockwise direction, see Figure
4 for example). Hence the isotropic symmetry value of p is
defined as

M iso(x, y) =
∑

(i,j)∈Γ(p)

c(i, j) (3)

where Γ(p) is all the pixel pairs within the radius r of p.
After the calculation of M iso on each pixel in the image,

we obtain the symmetry map on that scale, and practically,
the symmetry detection is performed on several different
scales and the merging technique is applied

S = ⊕sN(Ms) (4)

where ⊕ resizes different M to the same size, and 4 is cho-
sen as the quantities of scales s, between pair of which there



Figure 4. Flowchart to obtain symmetry maps. In the top-right
image, pi and pj are symmetry points according to p.

is a down scaling by a factor of 2. N is the normalization
operator used in [13], which normalizes the feature map to
[0..1], and then multiply with (1 − m̄)2. m̄ is the average
value of the feature map.

3. Learning a context-aware model
In the previous section, we have introduced different

kinds of features used in our approach including bottom-
up low-level feature cues, top-down object cues, as well as
figure-ground perceptual cues. In this part, the classifica-
tion model is introduced to predict final attention and eye
fixation results.

In the baseline MIT attention model [14], 10 positive
pixels and 10 negative pixels are chosen among the top 20%
and bottom 70% salient locations for each image as training
samples. Then a linear-kernel support vector machine is ap-
plied to predict label probabilities for testing images using
the basic features (F1-F8), and the results show promising
detection rates. However, their model do not consider the
spatial relationship between pixels and regions.

Recently in the literature, the random walk segmentation
algorithm [9] is influential and successfully model pixel-
wise relations and perform interactive segmentation given
starting points and labels. TextonBoost [28] also take re-
lation between local pixels into consideration to perform
semantic segmentation. However, these models are too lo-
cal and do not consider regional interactions. Some other
graph-based models such as mCRF [11] take care of re-
gional impact, but it is hard to implement every pixel into
the model due to the size limitation of the graph. Moreover,
their approaches are relatively complicated and the compu-
tational cost is high.

Here we propose a simple approach to take both
pixel-level and region-level contexts into consideration. To
represent regional context, a multiple segmentation model
is developed: for a given local pixel, we use the superpixel
containing that pixel as context, and comparison of context
is thus formulated as comparison of supuerpixels. Next, a

random-walk scheme is applied to infer label probabilities
for both superpixels and local pixels. The approach is
illustrated in Figure 5 and detailed as follows:

Region-wise random walk. Suppose we have multiple
segmentation hypothesis S = {S1, S2, . . . , Sn} for a given
image. M t is the superpixel set of St, and ∆fmn is fea-
ture distance between superpixel M t

m and M t
n. Given the

initial label probability P (M t
m|f tm) for superpixel m in the

hypothesis St ∈ S, we do: (1) move to a random superpixel
n neighboring to m, calculate P (M t

n|M t
m, f

t
n,∆fmn). (2)

Continues to other superpixels using step 1 until all the su-
perpixels are processed.

Pixel-wise random walk. After obtaining superpixel la-
bel probabilities for all the segmentation hypotheses, we
have a label vector ~Xp = {l1, l2, . . . , ln} for each pixel p
in the image, which implies label probabilities of different
superpixels that contain this pixel in different segmentation
hypotheses. Thus, another similar algorithm to obtain pixel
label probabilities is used: given the initial label probability
P (Np|fp) for pixel p, we do (1) move to a random pixel q
neighboring to p, calculate P (Nq|Np, fq,∆fpq,∆Xpq). (2)
Continues to other pixels using step 1, until all the pixels are
processed. ∆Xpq depicts the contextual distance between
pixel p and q

∆Xpq = ~α · ( ~Xp 	 ~Xq)
T

= (α1, .., αn) · (|xp1 − xq1|, .., |xpn − xqn|)T
(5)

where xpn and xqn depict the nth component of ~Xp and
~Xq . The addition of ∆X enables us to compare the context
between pixels, which is hard to valuate in previous works.
And it is especially useful at the intersection areas of ob-
jects. We import vector ~α = {α1, . . . , αn} here to represent
weights of different context when comparing pixels. Intu-
itively the weights are correlated with various factors. For
example, a pixel is highly related with its context in small
area comparing with a large area of context, and under such
circumstance the weigh for a small superpixel containing
that pixel is high.

4. Experiments and evaluations
4.1. Dataset

With the development and help of eye tracking devices,
researchers have gained access to real attention and eye fix-
ation data these years. Several high quality eye tracking
databases have been published in the literature recently, in-
cluding the MIT dataset [14], the NUS dataset [22], the CIT
FIFA dataset [3], as well as the Tsotsos dataset [2]. Among
them the MIT dataset has a better variety of images classes
and it is the closest to our natural world. We choose to eval-
uate our approach using this image database.



(a) (b)
Figure 5. (a) We segment the image into multiple segmentation
hypotheses, and label probabilities of superpixels in different hy-
potheses that contain the same pixel p form the contextual vector
~Xp for that pixel. (b) Given the label probability of a superpixel
(resp. pixel), we take into account feature difference (resp. and
contextual different) between two superpixels (resp. pixels) so as
to predict label probability for a random neighboring superpixel
(resp. pixel).

The MIT dataset contains 1003 images originally from
Flickr and LabelMe [27] with a wide scope of different
scenes and objects. The eye fixation data is then obtained
from multiple users using eye tracking devices. Next a
gaussian filter transforms discrete eye fixation points into
continuous attention maps, and groundtruth can be attained
by applying a threshold on the attention maps, which en-
ables us to evaluate experimental results qualitatively and
quantitatively.

4.2. Learning the model

Follow the baseline method in [14], we divide the
dataset into 903 training images and 100 testing images.
The images are resized to 200×200 pixels, and features F1
- F11 are calculated then. The training of the model can be
separated into several parts:

Learning weights for distances There are two kinds of
distance measurement applied in our approach: ∆f for fea-
ture distance and ∆X for contextual distance.

For ∆f , we use Joint Equal Contribution (JEC) proposed
in [18] to scale each group of feature (F1-F11) to [0,1],
and weight them the same because of the explicit physical
meaning of each component.

For ∆X , the weight ~α depicts importance of different
contexts for a pixel. We randomly select 20 pairs of neigh-
boring pixels that locate at intersection areas of superpixels
for each training image (otherwise ~X = 0 happens mostly
regardless of the weight). Moreover, these pixels should
be strongly positive or negative (top 20% or bottom 70%

saliency). Thus the training set P of 9030 pairs of pixels is
formed. We let l = 0 for negative pixels and l = 1 for pos-
itive pixels. The main target to learn the contextual weight
is that, we maximize the contextual distance between pix-
els with different labels, while minimize that between pixels
with same labels. The target function is below:

argmin
~α

∑
(a,b)∈P

(1− 2|la − lb|) · ~α · ( ~Xa 	 ~Xb)
T (6)

When pixel a and b have the same label, Eq.6 equals to
minimizing ~α · ( ~Xa − ~Xb)

T , and when they have different
labels, Eq.6 equals to maximizing the same item.

We employ a gradient decent algorithm to obtain the best
~α. The initial value of each component of the vector is set
to be inversely proportional to the area of that superpixel.
Because ~α is low-dimensioned (chosen as 4-dim described
later), the algorithm will converge quickly.

Learning initial guesses.
On the superpixel level, we first segment the images us-

ing Felzenswalb’s segmentation algorithm [6] with differ-
ent parameters, so that the images are separated into 10 - 30
pieces. n is chosen for 4, hence there are 4 hypotheses in the
multiple segmentation model. Next, given the groundtruth
attention map, we choose superpixels which contain more
than 80% area of top 20% saliency pixels as positive sam-
ples (totally 8669 samples), while superpixels which con-
tain more than 80% area of bottom 80% saliency pixels as
negative samples (totally 16615 samples). The feature value
for a superpixel is the mean value of all its containing pix-
els. Finally, we apply an liblinear support vector machine
to train the model, where parameter c is selected as 1.

On the pixel level, 10 pixels of top 20% saliency are
randomly chosen as positive samples for each training
image (9030 totally), and 10 pixels of bottom 70% saliency
as negative samples (9030 totally). No samples are chosen
within 10 pixels near boundary of images as the baseline
method does. A liblinear support vector machine is thus
applied again to train the model, and parameter c is selected
as 1.

Learning contextual interactions After initial guess of
samples, we take contextual interactions into consideration
using a Bayesian classifier, that is,P (Mn|Mm, fn,∆fmn)
and P (Nq|Np, fq,∆fpq,∆Xpq) respectively.

On regional level, given the feature difference between
one superpixel and its preceding (neighboring) superpixel,
we suppose the independency between variables and have

P (Mn|Mm, fn,∆fmn)
∝ P (Mm,∆fmn|Mn)P (Mn|fn)

(7)



where the first term can be learned from training data by
statistics, and the second term can be obtained from the ini-
tial guess stated above.

On pixel level, similarly we have

P (Nq|Np, fq,∆fpq,∆Xpq)
∝ P (Np,∆fpq,∆Xpr|Nq)P (Nq|fq)

(8)

Practically, we make statistics on the training sample set,
which consists of all the inter-superpixel relationship in the
multiple segmentation for Eq. 7 and 100 pairs of neighbor-
ing pixels per training image for Eq. 8.

4.3. Comparisons

To quantitatively evaluate both the new features and
model, we (i) use the baseline model while adding new fea-
tures; (ii) use our model while keeping original features;
(iii) use both new model and features.

Figure 6 and 7 illustrate results of the three purpose.
In Figure 6, we utilize the baseline SVM model while
adding the figure-ground features we proposed in this
paper. We threshold the groundtruth and detection result at
n = 5, 10, 15, 20, 25, 30 percent saliency simultaneously
to obtain binary attention map and comparison results. In
Figure 7 we demonstrate the usage of all the features and
new model at 30 percent saliency. Importances for different
feature are also illustrated.

We make the following conclusions from our experi-
ments and evaluations.

(1) We can see from Figure 7 that performances of sym-
metry and convexity are competitive to other bottom-up and
top-down features, while combination of the three figure-
ground cues performs almost the best among all the fea-
tures. This show that the addition of figure-ground features
is effective.

(2) Surroundedness performs not as good as other figure-
ground features despite its explicit psychological meaning.
It is still hard to obtain fully enclosed areas and objects sim-
ply by an unsupervised segmentation algorithm. Despite
surroundedness performs better than random guess, this cue
should be used when combining with other features.

(3) Our context-aware model upon multiple segmen-
tation is also effective compared with the baseline SVM
method. There is more or less performance enhancement
for each single set and combination set of features.

(4) The true positive rate for the baseline approach is
0.87, and the addition of figure-ground features while us-
ing the baseline model gives 2% performance enhancement.
The applying of our context-aware model while keeping ba-
sic features obtains 1.2% performance enhancement. And
when we use both new model and features we gain 3.6%
performance enhancement. Figure 8 demonstrates some
good results of our proposed features and model.

Figure 6. The ROC curve for the performance using baseline SVM
model while adding new figure-ground cues. The addition of
figure-ground cues provides 2% improvement.

Figure 7. Comparison of true positive rates using both new model
and new features under 30 percent salient, and importance of dif-
ferent features are also illustrated. Combination of the three figure-
ground cues performs well compared with other top-down and
bottom-up features. Moreover, when we us both new features and
model, 3.6% performance enhancement is obtained compared with
baseline approach.



5. Conclusion and discussion
In this work, by observation from experiments we con-

clude that figure-ground segmentation indeed contributes to
the attention selection, which confirms recent conclusions
in [21, 15] and shows a brand new way to predict attention
and eye fixations using perceptual organization and figure-
ground cues other than traditional bottom-up and top-down
methods. Moreover, the proposed context-aware model fur-
ther improves the baseline SVM model by considering both
pixel-level and region-level interactions.

In our future work, we plan to study another kind of at-
tention, i.e. controlled attention. It is really interesting and
promising to combine different levels of perceptual cues
into this task because recent studies have already shown that
when people search for a certain object in their visual field,
the mechanism of attention and eye saccades operates to-
tally different, which is of the same target of object locating
using sliding windows techniques in current computer vi-
sion society.
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