
Computing in the Era of Large Generative Models:
From Cloud-Native to AI-Native

Yao Lu1,2, Song Bian3, Lequn Chen4, Yongjun He5, Yulong Hui6, Matthew Lentz13,
Beibin Li19, Fei Liu18, Jialin Li2, Qi Liu7, Rui Liu8, Xiaoxuan Liu9, Lin Ma10,

Kexin Rong11, Jianguo Wang12, Yingjun Wu17, Yongji Wu13, Huanchen Zhang6,
Minjia Zhang14, Qizhen Zhang15, Tianyi Zhou16, Danyang Zhuo13

Nativ1, National University of Singapore2, University of Wisconsin, Madison3, University of Washington4, ETH Zürich5,
Tsinghua University6, University of Hong Kong7, University of Chicago8, University of California, Berkeley9, University

of Michigan10, Georgia Institute of Technology11, Purdue University12, Duke University13, University of Illinois,
Urbana-Champaign14, University of Toronto15, University of Maryland16, RisingWave17, ByteDance18, Microsoft19

ABSTRACT
In this paper, we investigate the intersection of large generative
AI models and cloud-native computing architectures. Recent large
models such as ChatGPT, while revolutionary in their capabilities,
face challenges like escalating costs and demand for high-end GPUs.
Drawing analogies between large-model-as-a-service (LMaaS) and
cloud database-as-a-service (DBaaS), we describe an AI-native com-
puting paradigm that harnesses the power of both cloud-native
technologies (e.g., multi-tenancy and serverless computing) and
advanced machine learning runtime (e.g., batched LoRA inference).
These joint efforts aim to optimize costs-of-goods-sold (COGS) and
improve resource accessibility. The journey of merging these two
domains is just at the beginning and we hope to stimulate future
research and development in this area.

1 INTRODUCTION
Recent advancements have witnessed the advent of generative AI,
notably in the realm of stable diffusion models such as SDXL and
large language models such as ChatGPT. These models have shown
revolutionary abilities in understanding human language and gen-
erating realistic content. As these models evolve and increase in
size and complexity, their applications expand across a wide range
of domains, from advanced chatbots and virtual assistants to data
analysis, forecasting, and even creative endeavors like writing, art,
and music composition.

However, the proliferation of these models and their applications
has brought about unique challenges to the systems and infrastruc-
tures underneath, both vertically in terms of increased individual
model and task complexity, and horizontally with the exploding
number of users and applications. Among many practical concerns,
cost of goods sold (COGS) is one of the major barriers to pushing
thesemodels further in AI applications. Take, for instance, OpenAI’s
GPT-4. The model inference is priced at $0.12 per 1K tokens1, which
is more than the expected revenue per usage in many web-based ap-
plications such as search engines [2]. The business justification for
using these large models comes under scrutiny. To train these mod-
els often at the scale of tens to hundreds of billions of parameters,
the vast amounts of data required, coupled with the computational
power needed, resulted in significant expenses. The iterative na-
ture of model refinement also piles up the costs over time. Besides

1With 32K context. Base model inference price in October 2023.

COGS, the accessability of GPUs, essential for training and serving
large models, has also emerged as a bottleneck. The surging de-
mand for large models has intensified the competition for high-end
GPUs; many research institutions and small enterprises grapple
with limited access to these specialized hardware resources.

In comparison, models such as Meta’s Llama-2 [75], offer a no-
table financial benefit due to their size; being smaller (a few to
tens of billions of parameters), these models are inherently cheaper
to train, use, and maintain. Instead of aiming for broad capabili-
ties as seen in gigantic generic AI models, these models are often
fine-tuned for specific tasks. This specialization ensures optimized
performance without the overhead of unnecessary model abili-
ties [5, 35, 81]. The large number of specialized models adds to the
complexity of the systems underneath.

The current AI software stack features a modular architecture.
Model runtime frameworks such as TensorFlow [4] and PyTorch [61]
are the key enablers for upper-layer systems such as Huggingface
Transformers [82], Megatron-LM [56, 71] and DeepSpeed [65, 66,
72], amplifying the model training and deployment efficacy in dis-
tributed settings. However, current efforts predominantly concen-
trate on vertical scalability and efficiency in single-model systems.
The challenges associated with resource accessibility and optimiz-
ing COGS in extensive scale-out configurations have yet to become
research and development focuses.
Looking back: cloud-native technologies. Arguably, large gen-
erative models, at a high level, function analogously to databases.
They capture data knowledge and, upon receiving a query or prompt,
assemble and provide a relevant response. To enhance the COGS
and resource accessability for large generative models, it is instruc-
tive to revisit the evolution of the cloud as well as database-as-a-
service (DBaaS) over recent years. Importantly, the challenges faced
are not unprecedented; many fall under the purview of cloud-native
computing, a paradigm shift that has redefined our understanding
of the cloud ecosystem.

Specifically, by utilizing containers and orchestrators like Kuber-
netes [42], cloud-native computing ensures scalability, resilience,
and modularity. The microservices structure decomposes systems
into distinct modules, enhancing agility and simplifying mainte-
nance. Multi-tenancy permits multiple systems and tasks to share
common infrastructures, thus optimizing resources and cost while
ensuring isolation. With auto-scaling and serverless computing,

the cloud-native architecture significantly improves COGS when
usage patterns change [40, 41]. In this vision paper, we unravel
the nuances of how systems for large generative models can be
seamlessly woven into the cloud-native computing architecture.
AI-native: new challenges and opportunities. Inherit from the
legacy cloud-native systems, several of the aforementioned tech-
nologies can be effectively applied, including the containerization
of machine learning runtime and the dynamic scaling of model
inference tasks. It is worth noting that, in these scenarios, machine
learning operations are often treated as black boxes. By fostering
a deeper integration and potentially co-designing machine learn-
ing runtime with cloud-native systems, we pave the way for the
emergence of a novel AI-native computing paradigm.

At the core of the AI-native paradigm lies the process of training,
fine-tuning, and deploying large models, with goals remaining
unchanged for improved COGS and resource accessability. Take
the following use case for instance of AI-native computing: as a
majority of end users cannot afford to train foundational models,
they fine-tune open-source models with their specific data and
applications. Currently serving hundreds of models at the same
time can be of low efficiency, even if these models are fine-tuned
from the same foundational model. In fact, this is a typical multi-
tenancy scenario. We note a prior work, Punica [20], that developed
an ML runtime with a batched LoRA inference mechanism which
improved the output throughput by up to 14x. This is an exemplar
of the AI-native computing paradigm.

To alleviate the resource accessibility issue, we may turn to
serverless computing and more versatile cloud infrastructures from
emerging decentralized GPU providers such as Vast.ai and Akash
Networks who offer cost-effective GPU containers. However, host-
ing diverse large-model jobs and building, operating, and optimizing
systems upon such heterogeneous and sometimes geo-distributed
infrastructures create unforeseen challenges.

Nevertheless, COGS and resource accessability are merely the
tip of the iceberg for this AI-native paradigm. Equally vital topics
include serving broader AI applications and so on; we defer more
discussions to Section 4. These challenges highlight the complexi-
ties involved in the deep integration of cloud-native methodologies
with large generative models and suggest numerous exciting op-
portunities for future research and development.
Key takeaways of this paper can be summarized as follows:

• The current AI software stack focuses on vertical scalability
and efficiency in single-model systems; horizontal scaling-out
scenarios have yet to become research and production focuses.
• Large-model-as-a-service (LMaaS) and database-as-a-service
(DBaaS) have commonalities. Many cloud-native designs are
readily applicable to improve system efficiency and other as-
pects. Meanwhile, many other techniques require further adap-
tations and co-design between ML and cloud systems. This
formulates a novel AI-native computing paradigm, and we pro-
vide a tentative list of interesting topics
• Many open questions remain. We provide an outlook on the
research and production challenges and opportunities.

2 BACKGROUND
Cloud-native computing has redefined software development,
leveraging concepts such as containerization and microservices for
scalability and adaptability. Classic software like legacy customer re-
lationshipmanagement (CRM) platforms and database systems have
been limited by the constraints of proprietary infrastructures. One
cornerstone of the transformation towards cloud-native computing
is containerization which allows developers to wrap applications in
containers, ensuring uniform behavior in heterogeneous environ-
ments. Kubernetes [42] and other container orchestration tools take
this a step further. Say an e-commerce platform witnesses a sudden
surge in traffic during a sale, an orchestrator can dynamically scale
resources, ensuring that the website remains responsive.

The microservice architecture decomposes applications into
discrete, function-oriented services. Cloud-native platforms like
YouTube exemplify this strategy. Instead of a monolithic structure,
they operate via microservices, each dedicated to specific tasks,
ranging from user authentication and data storage to video encod-
ing and streaming [28]. This approach offers several advantages.
First, it enhances robustness; isolated failures in one service will not
disrupt others. Second, maintenance becomes more manageable;
individual services can be updated or debugged without affect-
ing the entire ecosystem. Last, this architecture improves agility.
Developers can concurrently innovate and roll out new features.

It is worth noting that multi-tenancy plays an important role
in cloud-native computing. Rooted from the shared-everything
architecture in the 80s, software platforms started to harness multi-
tenancy to serve multiple users with shared resources on the set
of infrastructures, instead of spinning up individual instances for
each user [29, 36, 49, 55]. This greatly optimizes resource usage
and reduces user costs. Amongst many successful cloud-native
systems, database-as-a-service (DBaaS) exploits multi-tenancy from
various aspects including infrastructures, datasets, queries, and
relational operators. Prominent industry players like Snowflake [22]
and Amazon Redshift [34] have emerged, driven by the imperative
to provide enhanced services at competitive price points.
Large-model-as-a-service (LMaaS), fundamentally a cloud-based
approach, bridges the gap between advanced AI and real-world ap-
plications by offering efficient, scalable, and accessible deployment
mechanisms. Organizations, especially those without vast compu-
tational resources, can access state-of-the-art models without the
overhead of training, maintaining, and deploying the models. By
abstracting the complexities from the systems and infrastructures
aspects, LMaaS offers simple interfaces to end users:

Model training.W𝑚 ← train(𝑚,D, C) builds the model𝑚 on
dataset D with hyper-parameters C; the output is the weight (i.e.,
model parameters) of the modelW𝑚 .

Model fine-tuning.W ′𝑚 ← finetune(𝑚,W𝑚,D ′, C′) is a spe-
cial case of model training to gain domain-specific knowledge at
a much smaller cost. The input includes the weightsW𝑚 of the
previously-trained model. Different training hyper-parameters C′
are used with a dataset D ′ that is also often smaller. In a common
case, the disparity in C′ includes a much smaller number of epochs
while most other knobs remain unchanged.

2

Model inference. 𝑟 ← inference(𝑚,W𝑚, 𝑞) generates content
𝑟 with a trained model and an input query 𝑞.

Recently, Low Rank Adaptation (LoRA) [38], a fine-tuning strat-
egy to further reduce computational cost, has attracted both re-
search and production attention. Such a strategy only slightly
changes the user contract: for model fine-tuning, the contract
changes to Δ𝑚,WΔ𝑚 ← finetune(𝑚,W𝑚,D ′, C′′). The key
idea is to keep the weights of the base model W𝑚 unchanged
while training a small LoRA adaptorWΔ𝑚 that has only small frac-
tional trainable parameters. As a result, the fine-tuning speed is
faster by orders of magnitude. Therefore, the new model inference
contract is 𝑟 ← inference([𝑚,Δ𝑚], [W𝑚,WΔ𝑚], 𝑞) where the
input query 𝑞 goes through both the base and the adaptor models;
doing so incurs little impact on the inference latency since the
adaptor model is small.

LoRA provides an agile and low-cost contract in addition to
the simple LMaaS interfaces. The base model can be viewed as
a public asset for many different users and application scenarios,
while the adaptors serve as specifications. We will show how this
new contract plays an important role in cloud-native, AI-native
computing for the remainder of this paper.

HuggingFace and similar marketspaces are yet another driving
horse of LMaaS that provides the community with state-of-the-art
pre-trained models, finetuned adaptors, datasets, and a platform for
training and deploying custom models. Thousands of established
organizations publish models and other resources on their platform
which no doubt pushes the entire ecosystem of LMaaS further.

3 CLOUD-NATIVE FOR LARGE MODELS
The intersection of LMaaS and cloud-native computing is notmerely
a convergence of two technological domains; it is a fusion that has
the potential to reshape the very fabric of modern cloud and AI.
The synergies can be described below.

Containerization. It is worth noting that recent advancements in
virtualization technologies enable a transparent pass-through to
low-level operating systems. On the AI and deep learning frame-
work level, popular offerings such as PyTorch and TensorFlow have
integrated the runtime for heterogeneous compute architectures
such as CPU, GPU and FPGA. These developments, as well as the
protocol design for collaborative work in-between various con-
tainer instances, facilitate effortless delivery of the software stack
for large models in dynamic deployment scenarios.

Orchestration plays a critical role in ensuring elasticity, scala-
bility, and resilience, which are fundamental for LMaaS to deliver
robust and economically viable pay-as-use services. Given the fluc-
tuating nature of user workloads and the underlying infrastructure
dynamics, it is imperative to draw from, and further refine, the best
practices inherent in current cloud-native solutions. Take, for in-
stance, the changing query patterns: as they shift from predictable
or sporadic requests to intense traffic surges, serverless technologies
are equipped to dynamically and quickly scale resources upwards
and downwards. They can also facilitate the migration of contain-
ers tasked with model-serving functionalities. Such adaptability
minimizes resource redundancy and thus improves the COGS. Yet
another dimension to consider is the disparate resource availability

and heterogeneity across various segments of the cloud. Ensur-
ing efficient orchestration in such a diverse environment demands
meticulous resource management strategies involving a mixture of
resource allocation, queuing, and adjustments on-the-fly, especially
when catering to large-scale, distributed ML workloads.

Microservices. Beyond the fundamental services previously men-
tioned, there is a clear shift towards integrating large models with
enhanced functionalities and additional data. As the machine learn-
ing lifecycle matures, it increasingly intersects with sophisticated
algorithms and methodologies. A case in point is the recent adop-
tion of multi-stage training strategies in large language models,
particularly the use of Reinforcement Learning with Human Feed-
back (RLHF) [58]. Concurrently, the advent of diverse AI applica-
tions, including search engines, speech synthesis, business data
analytics, and image generation, demands processing capabilities
for multi-modal data. Given these complexities, cloud providers are
compelled to architect and streamline microservices and augment
the models backed by disaggregated, large-scale data stores. This is
essential to accommodate the rapid-growing diversity and volume
of data and the evolving landscape of machine learning algorithms.

Multi-tenancy, a design principle that affects each of the technolo-
gies above, can be viewed from different aspects. From the model
perspective, there can be multiple base models and each company
with multiple LoRA adaptor models; there can also be concurrent
input queries from different users. From the task perspective, there
can simultaneously be training, fine-tuning, serving, data prepara-
tion, management, and operational workloads. In these scenarios, it
is essential to consolidate the computation and save GPU memory.
These LM use cases also open up opportunities for multi-tenant
systems and infrastructures underneath to further save costs and
improve efficiency, for example, aggregated network communica-
tion and shared data infrastructures in distributed training and
dataset preparation tasks.

Armed with these capabilities, we are poised to establish cloud-
native infrastructures tailored for large generative models. In the
subsequent sections, we will describe our initial endeavors within
select areas of the aforementioned research spectrum.
Example: RAG-as-a-Service vs BI-as-a-Service. Retrieval Aug-
mented Generation (RAG) [45] has become an important topic in
natural language processing. It extends the capabilities of large
language models by incorporating an information retrieval system
for reference data. RAG is versatile in diverse applications such as
document analysis, summarization, personal chatbot interactions,
and code comprehension.

Figure 1 (Right) illustrates the workflow and architecture of
RAG-as-a-service (RAGaaS), compared with a typical cloud-native
Buiness-Intelligence-as-a-Service (BIaaS) [18] architecture in Fig-
ure 1 (left). In the right figure, the process begins with the extraction
of text documents or code from clients, followed by segmenting
inputs into smaller units. These segments are then transformed into
vectors and stored in a dedicated vector storage system.When a user
submits a query, the system retrieves the most relevant data chunks
from the vector storage. The user’s query and the retrieved data are
then combined and passed into the LM inference model to generate
an answer. In comparison, BIaaS in contemporary cloud-native

3

Disaggregated
Object Storage

Transformation

Tabular Data

Coodinator

DB Query Engine

Fetch Related Data

User Queries

Response

Embedding

Text Data

Coodinator

LLM Serving

Fetch Matching Data

User Queries

Response

BIaaS in Cloud Native DB RAGaaS in Cloud Native LM

with
containerization,

elasticity,
operator-pipeline,

 scheduling,
...

with
containerization,

elasticity,
multi-model,

resource allocation,
...

Text Spliting

Disaggregated
Vector Storage

Figure 1: BIaaS and RAGaaS share architectural commonalities.

database systems exhibits a similar workflow. It also involves data
processing stages for extracting, splitting, embedding, and loading
tabular input data. SQL queries initiate data retrieval and execution
of corresponding database operations, mirroring the data retrieval
and LM inference processes in RAG.
Adopting cloud-native techniques. When bridging the concepts
of database and large model applications, some cloud-native tech-
nologies can be readily applied in the context of RAGaaS. For in-
stance, large model inference endpoints can be containerized for
streamlined deployment; functionalities like vector database search
can be offered as microservices. A cloud orchestrator improves sys-
tem efficiency by leveraging disaggregated storage and dynamically
scaling containers and GPUs resources. To enhance multi-tenant
RAG workload processing, implementing query optimization and
batching techniques have proven to be effective, enabling batched
concurrent queries and routing different queries to various large
models in accordance with user service level agreements.

While cloud-native technologies offer immediate benefits, treat-
ing large model tasks and system components as black boxes, there
remains a wealth of untapped potential for specialized large-model
optimizations.

4 PRELIMINARY AI-NATIVE COMPUTING
In this section, we explore the prospects arising from the deep
integration of large models with cloud-native technologies, paving
the way for a novel AI-native computing paradigm. To achieve so,
we mention some prior work as well as some of our preliminary
experiments. Our purpose here is not for completeness but to point
out the potential values for future research in this area.
Case Study 1: Elasticity. The first idea from legacy cloud-native
computing that we try out is the elastic resource scheduling for
serving 7B llama-2 models on a cluster of NVidia 4090 GPUs. This
is of practical importance to improve resource utilization when
incoming query patterns vary. Our cloud orchestrator collects run-
time telemetries and applies a heuristics-based feedback mecha-
nism to scale up/down the number of inference instances. In our
preliminary experiments, we synthesize incoming queries with a re-
alistic whole-day pattern and demonstrate our findings in Figure 2a.
Surprisingly, with simple scaling heuristics, our system already

(a) Elastic resource scheduling.

b=
1

b=
1

b=
1

b=
1

b=
1

b=
2

b=
4

b=
8

b=
16

b=
32

0

250

500

750

1000

1250

T
hr

ou
gh

pu
t (

to
k/

s)

31 89 88 87 61 114
217

402

740

1205Transformers
DeepSpeed
FasterTransformer
vLLM
Punica

(b) Batched LoRA inference.

Figure 2: Preliminary results to verify AI-native computing.

provides prompt scaling; models can be loaded quickly in seconds,
with the aid of high-speed networking and PCI-E 5.0 bus. This indi-
cates that elasticity is possible and beneficial in the new AI-native
computing paradigm to improve resource usage efficiency.
Case Study 2: Multi-tenancy. Here we elaborate more on the ex-
ample shown in the earlier sections. When many LoRA fine-tuned
models [38] share the same foundational model, a novel machine
learning runtime, Punica [20], allows batching inference jobs from
multiple user queries. This is a typical multi-tenant scenario in
classic cloud systems where users share the same software infras-
tructures. The delta here is the model inference procedure which
involves one single copy of the base model and multiple LoRA adap-
tors. Punica implement a LoRA batching mechanism with a custom
CUDA kernel which enables fast communication between the base
model and adaptors. Figure 2b compares Punica with state-of-the-
art large model serving systems, with b = batch size on the x-axis,
and baseline systems such as Huggingface Transformers [82], Deep-
Speed [66], and vLLM [43] running at batch size 1, since they do not
support batched LoRA inference. Punica delivers 14x throughput
compared to vLLM at a batch size of up to 32 with 7B llama-2 base
model on a single A100 GPU with 80G memory.
Case Study 3: Hybrid cloud deployment and optimization.
As the cloud paradigm expands and becomes increasingly diverse,
notably by the ubiquitous smart devices and the Internet of Things.
A prior work, JellyBean [84], introduced a system that deploys
and optimizes machine learning inference workloads across such
heterogeneous infrastructures.

JellyBean has the following cloud- and AI-native designs: (1)
containerized runtime for deploying ML inference jobs on hetero-
geneous infrastructures such as IoT devices and cloud data centers,
and (2) a hybrid cloud orchestrator that imploys query optimization
techniques to choose the most cost-effective models aligned with
specified service-level objectives (like throughput or accuracy) and
assigns workers across different segments of the cloud. With these
designs, JellyBean empirically reduces the total serving cost by up
to 58% for tasks like visual question answering and by up to 36%
for vehicle tracking from the NVIDIA AI City Challenge, compared
to prior solutions for hybrid-cloud ML deployment.
Remark. Through three case studies, the advantages of a cloud-
and AI-native design in enhancing the efficiency and mitigating
the costs of large models become evident. While our investigations
remain preliminary and address only specific aspects, we anticipate
comprehensive and in-depth studies to follow, given the rising
significance of large generative models in research and production.

4

5 OUTLOOK TO THE FUTURE
While the previous section exemplifies a few valuable directions in
the AI-native computing paradigm, there are more open challenges
and opportunities that are equally important. We elaborate on some
of them in this section.
Runtime for large generative models.While this vision paper
mostly discusses scaling large generative models horizontally, ver-
tical scalability and efficiency of the machine learning runtime are
still of critical importance. Largemodels require substantial memory
that often exceeds the GPU capacity; key-value caches used in the
transformers push this further. Transferring data between High-
Bandwidth Memory (HBM) and Static Random-Access Memory
(SRAM) consumes memory bandwidth, hence sparse computations
make inference bandwidth-bound and result in underutilized GPU
compute capacities [70]. Building an efficient inference engine that
fully leverages the available memory and computation remains a
prevailing challenge.

Recent advancements in machine learning have introduced the
concept of Mixture of Experts (MoE) models [27, 68] and specula-
tive decoding [19, 44] to enhance the model’s efficiency and quality.
The primary idea behind these innovations is to curate a collection
of diverse, smaller models, each tailored for specific tasks, thus
avoiding the exhaustive use of complete models and conserving
computational resources. For example, models like Llama-2 already
exhibit varying sizes, making them more cost-effective when used
strategically. However, deciding if the potential savings and in-
creased efficiency outweigh the initial overhead of creating and
maintaining multiple models is non-trivial. Insights from database
management systems, such as materialized views [30], can be ap-
plied to efficiently handle recurring queries without repetitively
calling large models.

As spot innovations continue to advance rapidly, we antici-
pate that significant breakthroughs will emerge from both the
systems and machine learning domains. Examples include FlashAt-
tention [23, 24] and PagedAttention [43] mechanismwhich incorpo-
rates ideas from both domains; these innovations will push current
solutions to the next level.
Continuous learning and serving systems. In many applica-
tions, data comes in real-time. To provide users with useful and
up-to-date insights, serving systems may be required to keep learn-
ing from data streams. Traditional approaches of periodically re-
training or updating large models prove to be computationally
expensive and time-prohibitive [46].

Systems that learn continuously are the solution to keep the
models afresh. Classic stream processing systems like Naiad [52],
Spark Streaming [77, 87], Apache Flink [17], and RisingWave can
be adapted to process continuous data streams in (near) real-time.
Machine learning and data management technologies such as LoRA
fine-tuning [38] and indexing can be used to process new data and
update existing models efficiently. Machine unlearning [15], i.e.,
forgetting specific knowledge, is notable in future research and
production challenges to remove data that is not needed.

Real-time serving of large models presents challenges, including
scenarios where queries arrive in parallel but are not synchro-
nized [33, 64, 69]. Prior research such as Orca [85] has provided

tentative solutions. The complexity increases in multi-tenant sys-
tems where many base models, users, applications, and tasks com-
pete for the same resources. We anticipate future research will
systematically advance solutions in this domain.
Service availability. As large generative models become essential
infrastructure services, ensuring their resilience to failures is crucial.
Unlike database services that incorporate logging, checkpointing,
and replication in cloud-native architectures for both recoverability
and availability, large model training on distributed GPU servers
is resource-intensive and time-consuming [88]. Handling partial
resource failures is vital to maintaining model performance [80].
Straw-man solutions like periodic checkpointing are costly and
lead to GPU underutilization. Asynchronous approaches with fine-
grained logging offer a more promising direction for fault-tolerant
training, allowing for progress persistence without halting GPU
execution. In contrast, online inference prioritizes availability over
recoverability, as tasks are short and can be re-executed. Repli-
cating inference deployments across multiple fault domains elimi-
nates downtime but increases costs. Cloud-native proposals suggest
cost optimizations through multi-tenancy, enabling replication for
higher throughput and graceful failure recovery.

High availability is a challenge in LMaaS due to heterogeneous
hardware, fragile machine learning software, and evolving user
and application requirements. Future research opportunities in-
clude designing availability-guaranteed replication and recovery
algorithms, hardware-software co-design for faster crash recovery,
leveraging cloud storage architectures with specialized caching,
and so on. Addressing these challenges is crucial as large language
models become integral to various applications.
Resource accessability and ephemerality. Training and deploy-
ing large generative models often requires a multitude of GPUs,
especially during foundational model pre-training. High-bandwidth
networking is crucial for inter-node communication and gradient
synchronization. However, this gives rise to resource accessibil-
ity issues, making it challenging to access such infrastructures.
To address this, previous research has focused on training large
models using geo-distributed infrastructures [86], and there are
high expectations for further developments in this field. Simulta-
neously, cloud providers are also moving towards disaggregation.
Global GPU market spaces like Vasi.ai and Akash Networks offer
cost-effective rentals with highly heterogeneous compute nodes dis-
tributed worldwide. However, constructing cloud services on such
hyper-disaggregated infrastructures poses significant challenges in
communication, fault tolerance, and resource management. Never-
theless, the potential benefits are substantial.

Ephemeral cloud resources are increasingly prevalent, such as
spot instances [7] where short-lived computational resources are
provided and the rising zero-carbon clouds [21, 62] where the in-
frastructures rely heavily on sustainable energy sources (e.g., wind
power). These resources often have factional prices compared to
the rates for regular reserved or on-demand resources [8, 67] and
can exhibit significant fluctuations over time. It is challenging to
deploy LM tasks on ephemeral resources. Given that LM training is
typically long-running, it is essential to establish an efficient mech-
anism for model checkpointing and reloading. This mechanism

5

allows training processes to be paused when resources become tem-
porarily inaccessible or when prices become prohibitively high, and
then resume at a more opportune time without bringing substantial
overheads. LM inferences are often characterized by their sensi-
tivity to latency; timely and reasonable decision-making becomes
crucial for determining which inference jobs should be prioritized
and given access to available resources.
Diverse microservices. In addition to the basic large model train-
ing, fine-tuning and inference services, recent production offerings
start to explore broader microservices. For example, the lifecycle of
machine learning contributes multiple useful microservices such as
data curation, cleaning, transformation and labeling. Major cloud
vendors and DBaaS such as Databricks [25] and Snowflake [22]
already have relevant offerings and integration. A notable microser-
vice for LMaaS that can be distinct to the aforementioned cases is the
usage of vector databases [59] like Milvus [79] and Pinecone [1] to
cache intermediate results, frequent queries, or embeddings [3, 51].
RAG-based applications, discussed earlier in this paper, is another
important use case. Vector databases must choose the vector in-
dexes (e.g., a graph-based index HNSW [50]) to tradeoff between
memory consumption, query performance, and accuracy. Building
robust, scalable and efficient vector database as microservices to
the cloud system is of both research and production value.
AI operations (AIops) is now vital for managing complex cloud
infrastructures. It automates tasks like monitoring, troubleshoot-
ing, performance tuning, and resource optimization. In cloud-based
systems for large generative models, AIops will be a pivotal tool
to ensure the system reliability and efficiency. Challenges and op-
portunities are both significant. For instance, predicting workload
completion times and incoming workload patterns becomes cru-
cial for enhancing system performance and minimizing service
downtime [63, 78]. Optimizing the model training and inference
configurations (e.g., batch sizes, optimizer parameters) based on
the specific workload also has a significant impact on the system
performance and resource consumption. Insights from database
management systems, again, can be applied to intelligently auto-
mate the operation of LMaaS. For example, query forecasting meth-
ods [48] can help detect workload patterns and completion times.
Learning-based knob-tuning techniques [6, 76] can also help opti-
mize training and inference configurations. However, database and
LM workloads have disparate properties, which warrants deeper
investigation and adaptation of existing techniques.
Emerging applications and workloads. Apart from the RAG-
based applications mentioned earlier in this paper, there have been
emerging applications of large generative models; in addition to
model inference calls, they often employ complex workflows and
sometimes involve interactions or feedbacks from 3rd-party soft-
ware such as compilers and search engines. One notable type of
application is AI agents [47, 60] which require multi-turn inter-
actions between the agent and human, or among multiple agents
for web-shopping, robotics, gaming, and other use cases. Appli-
cation builders create AI agents from large model inference end-
points [37, 73, 83] using different role-defining prompts. While
many cloud-native techniques still apply in these scenarios, there
are challenges and opportunities to optimize these novel workflows.
For example, multiple AI agents that are fine-tuned with different

skill sets from the same foundational model can be seen as another
use case of multi-tenancy. Compute graph and query optimization
techniques may be applied to improve the execution. We project
that application-specific systems and optimizations will surge in
the near future.

6 RELATEDWORK

Systems for large models. PyTorch [61], TensorFlow [57], and
JAX [16] are among the popular deep learning frameworks. Py-
Torch used a dynamic computation graph, known as the define-
by-run paradigm, while TensorFlow was recognized for its static
define-and-run approach; they now support both modes. JAX of-
fers composable transformations of Python functions, facilitating
advanced optimizations and just-in-time compilation to heteroge-
neous architectures. A layer above, systems that serve complex
large models, especially in distributed setups [39, 53, 54], come
to attention; Megatron-LM [56, 71], DeepSpeed [66, 72] and Hug-
gingface Transformers [82] are three exemplars in this category
that provide easy-to-use, distributed training and deployment sup-
port. To continuously serve large models with concurrent users
and queries, Orca [85], TGI [74], and DeepSpeed-MII [26] build the
model serving layer with gRPC user endpoints. These systems are
necessary components of the AI-native computing paradigm.
Cloud-native in production. Major cloud providers offer a di-
verse range of cloud-native services. These include Database-as-
a-Service (DBaaS) solutions like Amazon RDS [10], Azure SQL
Databases [11]. Function-as-a-Service (FaaS) platforms like AWS
Lambda [12], Azure Functions [13], andGoogle Cloud Functions [31]
enable serverless code execution. Managed Kubernetes services
such as Amazon EKS [9], Google Kubernetes Engine (GKE) [32],
and Azure Kubernetes Service (AKS) [14] enable container orches-
tration. AI/ML services, big data and analytics, IoT platforms are
among the offerings that cater to various business needs, demon-
strating the versatility of cloud-native technologies.

7 CONCLUSIONS
This paper explores the similarities between Large-Model-as-a-
Service (LMaaS) and Database-as-a-Service (DBaaS), uncovering
shared characteristics and suggesting that cloud-native technolo-
gies can be leveraged to improve generative AI systems. However,
creating an AI-native computing paradigm through this fusion de-
mands deep insights and innovations. The paper presents three use
cases with initial findings, emphasizing future research challenges
and opportunities.

REFERENCES
[1] [n. d.]. Pinecone. ([n. d.]). https://www.pinecone.io/
[2] 2023. How Microsoft is Trying to Lessen Its Addiction to OpenAI as AI Costs

Soar. https://www.theinformation.com/articles/how-microsoft-is-trying-to-
lessen-its-addiction-to-openai-as-ai-costs-soar. (2023).

[3] 2023. LLM Limitations (https://zilliz.com/use-cases/llm-retrieval-augmented-
generation). (2023).

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning. In Symposium
on Operating Systems Design and Implementation (OSDI).

[5] Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. 2022. Revisit-
ing neural scaling laws in language and vision. Advances in Neural Information
Processing Systems 35 (2022), 22300–22312.

6

https://www.pinecone.io/
https://www.theinformation.com/articles/how-microsoft-is-trying-to-lessen-its-addiction-to-openai-as-ai-costs-soar
https://www.theinformation.com/articles/how-microsoft-is-trying-to-lessen-its-addiction-to-openai-as-ai-costs-soar
https://zilliz.com/use-cases/llm-retrieval-augmented-generation
https://zilliz.com/use-cases/llm-retrieval-augmented-generation

[6] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman,
Minlan Yu, and Ming Zhang. 2017. {CherryPick}: Adaptively unearthing the
best cloud configurations for big data analytics. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17). 469–482.

[7] Amazon EC2 Spot Instances 2023. Amazon EC2 Spot Instances. https://aws.
amazon.com/ec2/spot. (2023). Accessed: 2023-10-21.

[8] Amazon EC2 Spot Instances Pricing 2023. Amazon EC2 Spot Instances Pricing.
https://aws.amazon.com/ec2/spot/pricing/. (2023). Accessed: 2023-10-21.

[9] Amazon EKS 2023. Amazon EKS. https://aws.amazon.com/eks/. (2023). Accessed:
2023-10-21.

[10] Amazon RDS 2023. Amazon RDS. https://aws.amazon.com/rds/. (2023). Accessed:
2023-10-21.

[11] Panagiotis Antonopoulos, Alex Budovski, Cristian Diaconu, Alejandro Hernan-
dez Saenz, Jack Hu, Hanuma Kodavalla, Donald Kossmann, Sandeep Lingam,
Umar Farooq Minhas, Naveen Prakash, et al. 2019. Socrates: The new sql server
in the cloud. In Proceedings of the 2019 International Conference on Management
of Data. 1743–1756.

[12] AWS Lambda 2023. AWS Lambda. https://aws.amazon.com/lambda/. (2023).
Accessed: 2023-10-21.

[13] Azure Functions 2023. Azure Functions. https://azure.microsoft.com/en-us/
products/functions. (2023). Accessed: 2023-10-21.

[14] Azure Kubernetes Service 2023. Azure Kubernetes Service. https://azure.
microsoft.com/en-us/products/kubernetes-service. (2023). Accessed: 2023-10-21.

[15] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
141–159.

[16] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. (2018). http://github.com/google/jax

[17] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single
engine. The Bulletin of the Technical Committee on Data Engineering 38, 4 (2015).

[18] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. 2011. An overview
of business intelligence technology. Commun. ACM 54, 8 (2011), 88–98.

[19] Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Lau-
rent Sifre, and John Jumper. 2023. Accelerating large language model decoding
with speculative sampling. arXiv preprint arXiv:2302.01318 (2023).

[20] Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze Ceze, and Arvind
Krishnamurthy. [n. d.]. Punica: Multi-Tenant LoRA Serving. arXiv preprint
arXiv:2310.18547 .

[21] Andrew A. Chien. 2021. Driving the Cloud to True Zero Carbon. Commun. ACM
64, 2 (2021), 5.

[22] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
JianshengHuang, et al. 2016. The snowflake elastic data warehouse. In Proceedings
of the 2016 International Conference on Management of Data. 215–226.

[23] Tri Dao. 2023. Flashattention-2: Faster attention with better parallelism and work
partitioning. arXiv preprint arXiv:2307.08691 (2023).

[24] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344–16359.

[25] Databricks 2023. Databricks. https://www.databricks.com/. (2023). Accessed:
2023-10-21.

[26] DeepSpeed-MII 2023. DeepSpeed-MII. https://github.com/microsoft/DeepSpeed-
MII. (2023). Accessed: 2023-10-21.

[27] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity. The
Journal of Machine Learning Research 23, 1 (2022), 5232–5270.

[28] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. 2019. An
open-source benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the Twenty-Fourth In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. 3–18.

[29] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. 2011. Dominant resource fairness: Fair allocation of multiple
resource types. In 8th USENIX symposium on networked systems design and im-
plementation (NSDI 11).

[30] Jonathan Goldstein and Per-Åke Larson. 2001. Optimizing queries using mate-
rialized views: a practical, scalable solution. ACM SIGMOD Record 30, 2 (2001),
331–342.

[31] Google Cloud Functions 2023. Google Cloud Functions. https://cloud.google.
com/functions?hl=en. (2023). Accessed: 2023-10-21.

[32] Google Kubernetes Engine 2023. Google Kubernetes Engine. https://cloud.google.
com/kubernetes-engine?hl=en. (2023). Accessed: 2023-10-21.

[33] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving {DNNs} like clockwork: Perfor-
mance predictability from the bottom up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 443–462.

[34] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. 2015. Amazon redshift and the case for simpler
data warehouses. In Proceedings of the 2015 ACM SIGMOD international conference
on management of data. 1917–1923.

[35] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,
Hassan Kianinejad, Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. 2017.
Deep learning scaling is predictable, empirically. arXiv preprint arXiv:1712.00409
(2017).

[36] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A platform for
{Fine-Grained} resource sharing in the data center. In 8th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 11).

[37] Sirui Hong, Xiawu Zheng, Jonathan P. Chen, Yuheng Cheng, Ceyao Zhang, Zili
Wang, Steven Ka Shing Yau, Zi Hen Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, and Chenglin Wu. 2023. MetaGPT: Meta Programming for Multi-Agent Col-
laborative Framework. ArXiv abs/2308.00352 (2023). https://api.semanticscholar.
org/CorpusID:260351380

[38] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[39] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. 2019. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. Advances
in neural information processing systems 32 (2019).

[40] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of the
2017 symposium on cloud computing. 445–451.

[41] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud programming simplified: A berkeley view on
serverless computing. arXiv preprint arXiv:1902.03383 (2019).

[42] Kubernetes 2023. Kubernetes. https://kubernetes.io/. (2023). Accessed: 2023-10-
21.

[43] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
memory management for large language model serving with pagedattention.
arXiv preprint arXiv:2309.06180 (2023).

[44] Yaniv Leviathan, Matan Kalman, and Yossi Matias. 2023. Fast inference from
transformers via speculative decoding. In International Conference on Machine
Learning. PMLR, 19274–19286.

[45] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems 33 (2020), 9459–9474.

[46] Beibin Li, Yao Lu, and Srikanth Kandula. 2022. Warper: Efficiently adapting
learned cardinality estimators to data and workload drifts. In Proceedings of the
2022 International Conference on Management of Data. 1920–1933.

[47] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu,
Hangliang Ding, Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan
Zeng, Zhengxiao Du, Chenhui Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan
Sun, Minlie Huang, Yuxiao Dong, and Jie Tang. 2023. AgentBench: Evaluating
LLMs as Agents. arXiv preprint arXiv: 2308.03688 (2023).

[48] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,
and Geoffrey J Gordon. 2018. Query-based workload forecasting for self-driving
database management systems. In Proceedings of the 2018 International Conference
on Management of Data. 631–645.

[49] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-
man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis: Fair
and efficient {GPU} cluster scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). 289–304.

[50] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[51] Jason Mohoney, Anil Pacaci, Shihabur Rahman Chowdhury, Ali Mousavi, Ihab F
Ilyas, Umar Farooq Minhas, Jeffrey Pound, and Theodoros Rekatsinas. 2023. High-
Throughput Vector Similarity Search in Knowledge Graphs. Proceedings of the
ACM on Management of Data 1, 2 (2023), 1–25.

[52] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: A Timely Dataflow System. In ACM Symposium
on Operating Systems Principles (SOSP).

[53] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R
Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized pipeline parallelism for DNN training. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles. 1–15.

7

https://aws.amazon.com/ec2/spot
https://aws.amazon.com/ec2/spot
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/eks/
https://aws.amazon.com/rds/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/functions
https://azure.microsoft.com/en-us/products/kubernetes-service
https://azure.microsoft.com/en-us/products/kubernetes-service
http://github.com/google/jax
https://www.databricks.com/
https://github.com/microsoft/DeepSpeed-MII
https://github.com/microsoft/DeepSpeed-MII
https://cloud.google.com/functions?hl=en
https://cloud.google.com/functions?hl=en
https://cloud.google.com/kubernetes-engine?hl=en
https://cloud.google.com/kubernetes-engine?hl=en
https://api.semanticscholar.org/CorpusID:260351380
https://api.semanticscholar.org/CorpusID:260351380
https://kubernetes.io/

[54] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia.
2021. Memory-efficient pipeline-parallel dnn training. In International Conference
on Machine Learning. PMLR, 7937–7947.

[55] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
and Matei Zaharia. 2020. {Heterogeneity-Aware} cluster scheduling policies
for deep learning workloads. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 481–498.

[56] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti,
Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient large-scale language model
training on gpu clusters using megatron-lm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–15.

[57] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
serving: Flexible, high-performance ml serving. arXiv preprint arXiv:1712.06139
(2017).

[58] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730–27744.

[59] James Jie Pan, Jianguo Wang, and Guoliang Li. 2023. Survey of Vector Database
Management Systems. CoRR abs/2305.01087 (2023).

[60] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simulacra
of Human Behavior. (2023). arXiv:cs.HC/2304.03442

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems (NeurIPS) 32 (2019).

[62] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia,
Daniel Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon emissions
and large neural network training. arXiv preprint arXiv:2104.10350 (2021).

[63] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.
Optimus: an efficient dynamic resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference. 1–14.

[64] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Brad-
bury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. 2023. Efficiently
scaling transformer inference. Proceedings of Machine Learning and Systems 5
(2023).

[65] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Am-
inabadi, Ammar AhmadAwan, Jeff Rasley, and YuxiongHe. 2022. Deepspeed-moe:
Advancing mixture-of-experts inference and training to power next-generation
ai scale. In International Conference on Machine Learning. PMLR, 18332–18346.

[66] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[67] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi. 2022. Serverless Comput-
ing: A Survey of Opportunities, Challenges, and Applications. ACM Computing
Survey 54, 11s (2022), 239:1–239:32.

[68] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).

[69] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: a GPU
cluster engine for accelerating DNN-based video analysis. In ACM Symposium
on Operating Systems Principles (SOSP).

[70] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi
Chen, Percy Liang, Christopher Re, Ion Stoica, and Ce Zhang. 2023. FlexGen:
High-Throughput Generative Inference of Large Language Models with a Single
GPU. (2023).

[71] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion parameter
language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[72] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam
Rajbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. 2022. Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative language model. arXiv preprint arXiv:2201.11990
(2022).

[73] Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-Agent Collaboration:
Harnessing the Power of Intelligent LLM Agents. (2023). arXiv:cs.AI/2306.03314

[74] TGI 2023. TGI. https://github.com/huggingface/text-generation-inference. (2023).
Accessed: 2023-10-21.

[75] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[76] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009–1024.

[77] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali
Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle: Fast
and adaptable stream processing at scale. In Proceedings of the 26th Symposium
on Operating Systems Principles. 374–389.

[78] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,
and Ion Stoica. 2016. Ernest: Efficient performance prediction for {Large-Scale}
advanced analytics. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). 363–378.

[79] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xi-
angyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing Yuan,
Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yihua Mo,
Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-Built Vector
Data Management System. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD). 2614–2627.

[80] Zhuang Wang, Zhen Jia, Shuai Zhang, Zhen Zhang, Mason Fu, TS Eugene Ng,
and Yida Wang. 2023. Gemini: Fast failure recovery in distributed training with
in-memory checkpoints. (2023).

[81] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682
(2022).

[82] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

[83] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang
Zhu, Beibin Li, Li Jiang, Xiaoyun Zhang, and Chi Wang. 2023. AutoGen: En-
abling Next-Gen LLM Applications via Multi-Agent Conversation Framework.
arXiv:cs.AI/2308.08155

[84] Yongji Wu, Matthew Lentz, Danyang Zhuo, and Yao Lu. 2022. Serving and
Optimizing Machine Learning Workflows on Heterogeneous Infrastructures.
arXiv preprint arXiv:2205.04713 (2022).

[85] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-
Gon Chun. 2022. Orca: A distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 521–538.

[86] Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen,
Percy S Liang, Christopher Re, and Ce Zhang. 2022. Decentralized training of
foundation models in heterogeneous environments. Advances in Neural Informa-
tion Processing Systems 35 (2022), 25464–25477.

[87] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the twenty-fourth ACM symposium on operating systems
principles. 423–438.

[88] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui
Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. Opt:
Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068
(2022).

8

https://arxiv.org/abs/cs.HC/2304.03442
https://arxiv.org/abs/cs.AI/2306.03314
https://github.com/huggingface/text-generation-inference
https://arxiv.org/abs/cs.AI/2308.08155

	Abstract
	1 Introduction
	2 Background
	3 Cloud-native for large models
	4 Preliminary AI-native computing
	5 Outlook to the future
	6 Related Work
	7 Conclusions
	References

