
Warper: Efficiently Adapting Learned Cardinality Estimators to
Data and Workload Drifts

Beibin Li
University of Washington

Seattle, WA, USA
Microsoft

Redmond, WA, USA

Yao Lu
Microsoft

Redmond, WA, USA

Srikanth Kandula
Microsoft

Redmond, WA, USA

ABSTRACT
Recent learned cardinality estimation (CE) models are vulnerable
when query predicates or the underlying datasets drift from what
the models were trained upon. We propose a systemWarper that
accelerates model adaptation to drifts;Warper generates additional
queries when limited examples are available from the newworkload
and carefully picks which queries to use to update the CE model.
We show that Warper can be used to adapt different CE models
including ones that support queries over single tables and join ex-
pressions. Experiments with different drifts suggest that Warper
has a small computational cost and adapts much faster compared
to state-of-the-art solutions. We also show that faster model adap-
tation improves query performance by shortening the period for
which imperfect query plans are picked by a query optimizer due
to incorrect cardinality estimates.

CCS CONCEPTS
• Information systems→ Database query processing; • The-
ory of computation→ Database query processing and opti-
mization (theory); Online learning algorithms.

KEYWORDS
Cardinality estimation, database optimization, data shift, adaptation

ACM Reference Format:
Beibin Li, Yao Lu, and Srikanth Kandula. 2022.Warper: Efficiently Adapting
Learned Cardinality Estimators to Data and Workload Drifts. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22),
June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3514221.3526179

1 INTRODUCTION
We consider learned cardinality estimation (CE) models in query
optimizers and other applications. Examples include Learned Mod-
els (LM) [10] and MSCN [25]. Such models train over a corpus of
(predicate, cardinality) pairs for each relation and aim to estimate
the cardinality for a given, possibly unseen, predicate. These models
show promising accuracy on predicates that are similar to those

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526179

LO

𝜎

⋈ X X’
1

10

G
M
Q

30
35
40
45
50
55
60

0 6 12 18 24 30A
vg

 l
at

en
cy

(s
)

Adaptation progress (min)

Warper

Figure 1: Visualizing the effect of workload drift on the perfor-
mance of a simple query using tables from TPC-H [1]; the predi-
cate shown is drawn from distribution X which changes to X’;1 on
the right, we see how the GMQ2 of cardinality estimates from [10]
and the query latency vary at different adaptation steps when new
queries arrive from X’.

used in training; however, changes to the underlying data or predi-
cates are known to cause sizable drops in accuracy [10, 21, 25, 48].

To respond to changes in data or predicate workload, prior so-
lutions suggest updating the models by re-training or fine-tuning
using newly drawn (predicate, cardinality) pairs [10, 25]. Since
these models require training sets of several thousands of queries,
re-obtaining the updated training corpus is costly and has high
latency. If only the data changes, the ground-truth cardinality la-
bels will have to be recomputed [9, 25]. Worse, when the predicate
workload changes, the models may have to wait until enough new
queries appear. The net result is that model adaptation is slow and
expensive; meanwhile, poor cardinality estimates lead to imperfect
plan choices and degrade the query performance.
Example. To concretize these concerns, consider the simple select-
project-join query in Figure 1; here L andO denote the Lineitem and
Orders tables from TPC-H [1] and we consider different choices for
the predicate on L. During the CE model construction, the training
predicates are drawn from the distribution shown in blue (marked
X) while newly arriving predicates to test the CE model are drawn
from the distribution in orange (marked X’).1 On the right, we
show the GMQ2 of cardinality estimates for LM [10] as well as the
actual query latency when this query executed with TPC-H inputs
at a scale factor of 10 on a desktop-class machine. By improving
the model accuracy,Warper improves the query performance in a
sizable way; as the figure on the right shows, adapting to workload

1This is a 2-d visualization of multi-variate predicates; more details are in §2.
2GMQ is the geometric mean of q-error, a well-used metric for CE, defined in §4.1.

https://doi.org/10.1145/3514221.3526179
https://doi.org/10.1145/3514221.3526179

drift reduces cardinality estimation errors by up to 3× and the query
latency improves by 31%3.

An ideal adaptation technique should satisfy the following re-
quirements. First, the costs to adapt models should be small, es-
pecially relative to the benefits. Next, different scenarios require
different adaptations. For example, when only the dataset changes,
i.e., the query workload is stable, a key concern is which ground
truth cardinality labels to re-obtain to keep costs small. When the
predicate workload changes and only limited examples are avail-
able, a key concern is how to generate more examples that mimic
the new workload. Finally, when or how often should the model
be updated, and how to use examples that have possibly inaccu-
rate ground truth and are possibly no longer representative of the
newly arriving predicates? With Warper, we take a first stab at
these aspects.

One part ofWarper is inspired by recent advances in Generative
Adversarial Networks (GANs)[13, 19, 40]: a generator aims to syn-
thesize examples that are indistinguishable from the observed new
predicates, and an adversarial discriminator aims to distinguish the
synthetic queries from actually observed queries; we train both in
an adversarial game.Warper also has a picker that predicts which
input queries are more valuable to update the CE model and re-
duces costs by only annotating (fetching up-to-date ground truth
cardinality labels for) those queries.

Warper takes as input the newly arriving predicates, database
update statistics and a CE model that has been trained from work-
load history. It identifies the nature of the ongoing drift, learns to
generate additional queries when necessary, and updates the CE
model. The output ofWarper is an improved CE model that is more
accurate given the ongoing drift. Notably,Warper is agnostic to and
uses the underlying CE model as a black box (e.g., the model can be
LM [10] or MSCN [25]);Warper does not modify the model’s struc-
ture and hyper-parameters and applies directly to the predicates
that the model can support; improvements accrue from generating
and labeling useful examples so that the CE model adapts quickly.

Adapting previously trained models to different drifts (e.g., co-
variant and concept drifts) has been studied in the machine learning
literature [41]; a few different ideas have been used to synthesize
new examples, such as using clustering heuristics or by adding
noise to the observed examples [7, 16, 38, 47]. We find these aug-
mentations manual, task-specific, expensive, and inefficient. Also,
in AI applications, new examples can be used for training without
ground truth [50] or ground truth acquisition can be delayed [41],
done only when needed [39], or be computed using existing la-
bels [28]. We find that adapting CE models is challenging since
generating synthetic predicates intertwines in a complex way with
acquiring or updating the ground truth labels.

We are unaware of any prior work that effectively adapts learned
database models to data and workload drifts. In our experiments
on a typical database server without GPU,Warper speeds up model
adaptation by many times over solutions from the ML literature
while using <1% extra CPU utilization (details in §4). Warper incor-
porates different learned components to handle different drifts and
generates synthetic queries only when necessary. Finally, we show

3The GMQ is about 7 after convergence vs 19 before adaptation. Imperfect CE lead to
excessive buffer spills; more details are in §4.2.

that faster adaptation translates to query performance gains by
injecting cardinality estimates into a production query optimizer.
The contributions of this paper are as follows:

• We demonstrate how data and workload drifts can affect ML
models that learn over workload history. Drifts often lead to
significant accuracy and query performance deterioration, and
prior solutions may require many examples to adapt.
• We propose Warper, a system that collaborates with an exist-
ing CE model in a non-invasive manner and accelerates model
adaptation to changes in the data and workload.
• Experiments show thatWarper offers a useful cost-speedup
tradeoff; at a small cost, Warper adapts many-fold faster than
fine-tuning and other baselines. Warper also generalizes to
different CE models and handles a variety of individual and
continuous drifts in the data and workload.

2 BACKGROUND AND MOTIVATION
Learned database components have attracted great attention re-
cently. Recentworks have demonstrated promising results in learned
indexes [27], filters [33] and query optimization [36].Warper adapts
cardinality estimation (CE) models [10, 25] to different drifts; here,
we describe relevant work and the scope ofWarper.
Scope of the underlying CE models. Warper is designed to be
agnostic to the underlying CE model; that is, we will show that
Warper can be used to adapt several different CE models including
LM [10] andMSCN [25]; we also show results for variants of LM that
use gradient boosted trees [14], multi-layer perceptrons (MLP) [18]
and support vector machines [6]. The LM model covers predicates
of the following kind on individual tables while the MSCN model
covers key-foreign key join conditions in addition to predicates of
the following kind on each table: SELECT count(*) FROM T
WHERE

∧
i li ≤ Coli ≤ ui , where T is a table and columns can

have values of date, numeric or categorical types. Note that equal-
ity and one-sided range predicates belong in the above class: for
equality, we set li = ui ; for one-sided ranges, we set li = min(Coli)
or ui = max(Coli), and for columns that are not in the predicate,
we set (li ,ui) = (minColi ,maxColi). Some generalizations also
follow directly, e.g., using multiple calls for disjunctions.

Recent CE models can be classified into those that learn from
workload history [10, 25] and those that learn directly from the
dataset [21, 48]. While both kinds of models lose accuracy upon
changes, in this paper, we focus on adapting the workload-driven
models because they can be adapted by re-training or fine-tuning
with an updated set of queries. On the other hand, data-driven mod-
els lack a common adaptation pattern; some must be rebuilt from
scratch when data changes [48] while others use model-specific
updates that do not generalize [21].
Workload drift vs. data drift.We denote a learned CE model as
MX ,D,y if it was trained using the predicate workload X on table D
and with cardinality labels y. We focus on these three aspects that
are agnostic to model internals because the workloads and the table
can change independently during a drift. The labels will change
when either of them changes. The workloads and labels are inputs
to model training and re-training. We already saw an instance of
workload drift in Figure 1 wherein X changed. By data drift, we

refer to changes to the underlying dataset, e.g., inserts, appends,
deletes, or updates to rows:4 here, the ground-truth cardinality
labels y become inaccurate, and the previously trained model loses
accuracy. For example, the cardinality estimation error of the LM
model [10] on the Power dataset [8] increases by 2× when 20% of
the rows are appended and over 55× when 100% of the rows are
updated. In absolute terms, the model goes from being somewhat
usable with no updates (a GMQ of 1.8 indicates that cardinality is
under-estimated by 44% or over-estimated by 80% on average) to
rather unusable when 20% of the data changes (a GMQ of 3.6 which
indicates an average under-estimation of 72% or over-estimation
of 260%). In practice, we find that workload and data drifts happen
continuously and simultaneously.
Visualizing workload drift. We briefly sketch our method to vi-
sualize workload drifts which we have used in Figure 1. Range pred-
icates with low and high values on d columns can be represented
as a 2d-dim vector. Since most relations have many columns (high
d), we convert predicates into fewer dimensions using Principal
Component Analysis (PCA) [46]; specifically, we compute eigen-
vectors by running singular value decomposition (SVD) over all
predicates, select the two highest weighted eigenvectors, and rep-
resent each predicate using its projection on those eigenvectors.
The resultant 2-d plots allow us to qualitatively compare the drift
between workloads.
Space of adaptation solutions andwhereWarperfits in.Broadly
speaking, adaptation techniques solve these problems: (1) determine
when the model must change, (2) acquire new training examples,
e.g., predicates and cardinality labels, that more closely resemble
future workload, (3) figure out how to combine new examples with
the previous training examples that are possibly inaccurate and (4)
update the existing model using these examples.

There are two popular ways to update models. By fine-tuning
we refer to training the model for a few more epochs with the
updated workload; model training is typically iterative (e.g., using
SGD to train neural networks) and fine-tuning has been shown to
be practically useful [18, 49]. By re-training we refer to training the
model (with the same structure and hyperparameters) from scratch
over the updated workload. The computation cost of the model
update depends on the complexity of the model; we find that the
latency to re-train ranges from minutes for the neural network-
based LM models [10] to tens of minutes for the more complex
MSCN model [25].

Acquiring up-to-date training examples includes identifying new
queries and obtaining up-to-date ground-truth cardinality labels
for them. The latter typically requires querying the DBMS; doing
so can be expensive even if implemented efficiently, e.g., batching
predicates into a single evaluation tree and executing many pred-
icates in one query still scans the underlying table at least once.
Some prior works suggest using samples [9]; since predicates can
have a wide range of selectivities, one must use a bag of samples
of different types and sizes, which in turn increases the complex-
ity to maintain samples. Also, sampling-induced errors can affect
model quality. Instead, to acquire new training examples on DBMSs
that have a high and continuous rate of queries,Warper carefully

4We defer supporting schema changes to future work.

Notation Meaning
γ # of annotated queries needed for a robust model.
Itrain The original training workload (i.e., a set of queries) that

was used to build the CE model.
ni #iterations to update the Warper modules in each invocation.

ng , np , na # of examples to generate by G, pick by P and annotate by A.
nt # of arrived queries from the new workload.

Table 1: Notations used in this paper.

(a) (b) (c)

Time
Figure 2: Top: different colored boxes show different kinds of drifts.
Bottom: we show boxes whenever Warper adapts the CE model;
note that Warper periodically evaluates if the model needs to be
adapted and handles different kinds of drifts in a unified manner.

and judiciously picks which queries to use to update the model. In
the converse case, when a DBMS has only a slow rate of queries,
rather than wait until enough new queries arrive,Warper generates
synthetic queries that mimic the actual ones to speed up adaptation.

There is sizable prior work in ML literature on generating realis-
tic synthetic examples [38, 47] including heuristics, e.g., add noise
to the observed queries [43] and posterior generative models [15].
With Warper, we will show that using Generative Adversarial Net-
works (GANs) leads to better quality. GANs have shown promising
results in synthesizing image, text, and audio examples [20, 24, 30]
which in turn have helped to train object detectors and image seg-
menters [22, 23]. Warper occupies a different point in the design
space; unlike AI applications that may use sparse or delayed an-
notations, obtaining cardinality labels incurs an immediate cost
before the new queries can be used to update the model.
Problem formulation. Given a CE model M that is previously
trained from workload history and a few example queries from the
new predicate workload (alongwith their ground truth cardinality if
available), we consider adapting the CE model to data and workload
drifts quickly using few resources. Table 1 shows the notations used
in this paper. The goals of our adaptation method are:
• Accelerate adaptation, i.e., achieve the same accuracy quickly,
• use only a small amount of additional resources,
• support a wide variety of CE models and,
• cover a wide scope of drifts with a unified solution.
Notably, for workload drifts, adapting CE models requires an ad-

equate number of labeled queries.5 We consider different scenarios
based on whether incoming queries are inadequate and whether
ground truth can be computed for all queries. Drifts can also be
complex; they can happen jointly (e.g., a drift that affects both
data and workload) and change frequently. Figure 2 shows complex
drifts including (a) short-lived drifts, (b) persistent or continuous
drifts, and (c) combinations of different types of drifts.

M, { ⟨q, gt⟩ }nt → det_drft
mode (of drift)

−−−−−−−−−−−−−−−−−→ gen, pick, update (Alg1)

No drift (mode=�)
useM

Figure 3: Given queries with cardinality labels {⟨q,gt⟩} from the
new workload,Warper uses different strategies for adaptation.

5We show in §3.1 how to determine if actual queries are adequate to update a model.

Drift Mitigations in Warper Note
gen? pick? update?

c1 Data × ✓ ✓ Unchanged workload, slow labeling.
c2 Wkld ✓ ✓ ✓ Inadequate incoming queries.
c3 Wkld × ✓ ✓ Slow labeling, can happen with c2.
c4 Wkld × × ✓ Adequate queries with labels.

Table 2: Individual data and workload (wkld) drifts and adaptation
strategies. Complex cases are combinations of individual drifts.

Model
M

Annotator

A
Encoder E

Generator G Discriminator D

Picker P

Query Pool
{(q, gt, z, 𝑙, 𝑙′, 𝑠′)}

Warper

update

gt

q

External modules

Figure 4: Architecture of the Warper system.

3 DESIGN OF WARPER
Warper adapts to drifts periodically. The inputs forWarper are a CE
modelM, database telemetry and queries with cardinality labels (if
available) {⟨q,gt⟩} from the new workload. As shown in Figure 3,
at each period, where zero, one or more kinds of drifts may happen,
Warper detects the type of drift that is underway and adapts using
one or more of the following strategies:

• gen:When there are inadequate new queries to updateM,Warper
synthesizes additional queries that mimic the new workload.
• pick: When acquiring ground-truth cardinality labels cannot
keep up, Warper conserves resource usage by picking useful
queries to annotate.
• update: Warper updates6 M using labeled queries.

Table 2 shows how these strategies combine for some example
drift types. (1) Cases c2 and c3 correspond to workload drifts,
wherein new queries are inadequate (in c2) and annotation is slow
(in both); Warper generates additional queries for c2 and picks
the queries to annotate in both cases. (2) In case c4, wherein an
adequate number of labeled queries are available, Warper directly
updatesM.
System architecture, shown in Figure 4, has four key components.

• The query pool maintains tuples of (q, gt, z, l , l ′, s ′) wherein q
is a predicate with ground truth cardinality gt and l denotes the
source of the predicate – a prior training workload (l = train),
the new workload (l = new) or synthesized (l = gen). Other
parameters are defined next.
• The GAN which emits synthetic queries consists of a generator
G and the discriminator D. l ′ is the predicted source of the
predicate fromD and s ′ is the confidence score for the prediction.
• The picker P borrows ideas from active learning [41] to perform
a weighted sampling over the given set of predicates.
• The encoder E embeds predicates q into a different space zwhich
is used by the other components.
• Note the two external modules here: (1) the CE model M, short
for MX ,D,y , is the previously trained model that Warper aims
to improve; Warper needs not know the structure ofM. (2) The

6Fine-tune or re-train, depending onM; see §3.2.

annotator A computes ground truth for query predicates and
can be a DBMS query or custom code.
Next, we describe our approach end-to-end which detects and

adapts to drifts in §3.1. We discuss the key components ofWarper
in §3.2 and §3.3. Finally, we discuss the system robustness in §3.4.

3.1 Detect, identify, and adapt to drifts
Detect drifts: Prior learned CE models suggest updating periodi-
cally or whenever enough new queries are available [10]. As shown
in Figure 3,Warper uses evaluation feedback from database teleme-
try to identify a potential drift when the evaluation error of the CE
model on the newly arriving queries exceeds the error observed
during training by more than a threshold (δm > π). Thus,Warper
adapts only when model accuracy has degraded. We discuss further
details, caveats, and corner cases in §3.4. If no drift is detected,
Warper simply uses the current model (mode=� in Figure 3). This
det_drft trigger is simple and easy to implement efficiently.
Identify drift modes: Each det_drft call also characterizes the
drift that is underway as one of the cases in Table 2 which we
call the mode flag; thus, mode can indicate a data drift c1 and/or
a workload drift {c2,c3,c4}. More than one kind of drift may be
detected at a time as we discuss next.
Data drifts. In data drifts, the cardinality labels for all queries (includ-
ing those from the previous training set Itrain) may be outdated. To
identify data drift from D to D ′, we use different measures, includ-
ing (1) counting the fraction of rows that are new or have changed
since the model was last trained, and (2) measuring the change in
ground truth cardinality for a few canary predicates. A data drift
sets the c1 bit in the mode flag. For data drifts, we must re-obtain
cardinality labels.
Workload drifts. We leverage a symmetric form of the discrete
Jensen-Shannon Divergence [35] to measure the drift in workload.
Specifically, if A and B denote the newly arriving predicate set
and the predicates that the model was trained upon previously, we
apply PCA7 to reduce predicates to k-dims. Next, we quantize each
dimension into m bins; thus, each predicate becomes a value in
[0,km). Third, we compute km-bucket histograms HA, HB respec-
tively over the predicates in each workload where each histogram
bucket stores normalized frequencies. Finally, we compute a sym-
metric discrete KL-divergence [29] measure.8 The δjs metric is a
value in [0, 1] with 0 indicating identical distributions.

We identify different kinds of workload drifts as follows: (1)
c2 denotes the case when newly arrived queries are inadequate;
that is, the number of new queries available (nt) is below γ , the
number of annotated queries necessary to train a robust CE model.
We estimate γ offline based on the training size at which the accu-
racy ofM stabilizes and tune γ , online, based on how the accuracy
ofM stabilizes during adaptations. (2) c3 denotes the case when
the number of queries with ground truth labels is inadequate, i.e.,
na < γ ; this can happen because computing the labels is too slow
or too expensive or when execution feedback contains cardinality

7similar to the visualization strategy described in §2, each is a matrix where each row
represents a predicate.
8Let M = 1/2(A + B), then δjs(A, B) = 0.5 ∗ (KL(A, M) + KL(B, M)) where
KL(F , G) =

∑
x HF (x) (logHF (x) − logHG (x)). To prevent numeric error, we add

a small constant to each H (x).

Algorithm 1: Warper procedures in an invocation.
Input :Newly arrived {⟨q, gt⟩}, drift mode from det_drft,

M, G, D, E from the previous invocation.
1 pool.append({⟨q, gt, l=new⟩});
2 if mode contains c1, c2 or c3: //mitigate drifts using gen and pick.
3 if mode contains c2: //generate synth. queries and update GAN.
4 while ni --: // up to ni iterations, see Table 1.
5 qgen ← pool.gen(G, E, ns); // gen. ns synth. queries.
6 pool.update_MultiTask(G, E, D, qgen); //see §3.3.
7 pool.append({⟨qgen, l=gen⟩});
8 else: pool.update_AutoEncoder(G, E); //see §3.3.
9 anno(pool.pick(E, mode, np)); //update gt for np queries.

10 M← update(M, pool); // update the underlying CE modelM.
Output :Updated CE modelM and internal models G, D, E.

estimates for some but not all of the expressions that a query opti-
mizer will consider during planning [34]. (3) c4 is the converse case
when both queries and ground truth are adequate. As we discuss
in §3.4, Warper is rather robust to inaccuracies in estimating γ
since the drift type identification repeats in each period. Warper
also uses a form of early stopping to reduce unnecessary resource
usage due to false positives in drift detection. Note that higher CE
error for newly arriving predicates may indicate that the workload
has drifted or may just be due to outlier predicates that belong in
the previous distribution. To balance quick reaction to drifts with
reducing the resources consumed by false positives, Warper adapts
the error threshold (π from earlier in §3.1) over time.
Adapting to individual drifts. Alg. 1 further fleshes out the ac-
tions in Figure 3. We will give a brief overview here and will discuss
in more detail in subsequent paragraphs. Warper injects newly ar-
rived predicates into the query pool (line#1). Lines#4–#6 update the
generator and discriminator if synthetic queries are needed (c2).
Note that the GAN models and the Encoder adapt on-the-fly during
the update_ calls in lines#6 and #8. Line#9 picks the queries to use
for training and annotation. Finally, line#10 updates the CE model
using predicates and labels from the pool. We describe details of
the modular calls, e.g., gen(), in §3.2 and §3.3. It is easy to see that
many calls can be parallelized.9

Adapting to complex drifts.When multiple kinds of drifts hap-
pen at a time, i.e., mode = c1|c2 or c2|c3 and so on, Warper
combines different mitigation strategies. Note that Alg. 1 presents
different combination of strategies based on the value of the mode
flag. For continuous drifts, as discussed earlier, Warper repeats the
drift detection and adapts periodically (e.g., in each x-tick of Fig-
ure 2) using the same adaptation strategy from Alg. 1.

3.2 Using Warper Components
We describe in detail the design and implementation of individual
modules used in Warper as shown in Figure 4 and Alg. 1.
The query pool is an in-memory data structure that maintains
queries and associated content as shown in Figure 4.Warper initial-
izes the query pool using the original training workload (Itrain).
That is, for each (q, gt) tuple in Itrain, Warper creates a record in
the query pool with l = train and empty values for z, l ′, s ′. During

9A multi-threaded version of this algorithm is in our tech report [2].

each adaptation step, i.e., each call to Alg. 1, newly arriving queries
along with their cardinality labels (if available) are injected into the
query pool with l = new. When necessary, synthetic queries (qgen
in Alg. 1) generated using the GAN are also added to the query pool
with l = gen and gt=-1. During the course of adaptation, the differ-
ent componentsWarper update fields in the pool, e.g., the annotator
A updates gt, the encoder E updates z and the discriminator D
updates the predicted label and confidence score (l′, s′).
The CE ModelM can be any function that emits a cardinality for
a given query predicate: q → M → card which can update()
itself using additional labeled predicates (Line#10 in Alg. 1).Warper
aims to improve the CE model without needing to know the model
design.10 The appropriate update process differs across models; for
example, neural networks (NNs) are iteratively trained and can be
fine-tuned but tree-based models usually need to be re-trained from
scratch. Featurization is also model specific; for example in LM [10],
each query is featurized as the vector {low1, .., lowd , high1, .., highd }
where lowi and highi denote the low and high range checks for
the i − th column of a table. MSCN [25] on the other hand uses a
featurization that allows for predicates over multiple tables;Warper
supports whichever featurization is used by the modelM.
Table 3 lists the structures of learned models used inWarper.

Layer Encoder E Generator G Discriminator D
1 Fully Conn. 128 Fully Conn. 128 Fully Conn. 3
2 Leaky ReLU activation Leaky ReLU activation
3 Fully Conn. 128 Fully Conn. 128
4 Leaky ReLU activation Leaky ReLU activation
5 Fully Conn. 128 Fully Conn. 128
6 Leaky ReLU activation Leaky ReLU activation
7 Fully Conn. |z | Fully Conn.m

Table 3: Specifications of the learned Warper modules. |z |: the em-
bedding size.m: input size toM.

The Encoder E transforms a predicate into a compact embedding
vector as representation:

q → E→ z.

Recall that Warper is agnostic to the CE model M and each may
use a different featurization,Warper leverages learned encoder to
decouple internal components (i.e., G,D,P) from the featurization
used by M. We found that doing so improves the performance
ofWarper. In our implementation, embed() uses the ground truth
labels as an additional input (beyond q) whenever they are available
and up-to-date. The encoder is learned on the fly and embeddings
are updated in each invocation of Alg. 1.
The Generator G synthesizes new query predicates using the
predicate embeddings in the pool:

z + ϵ → G→ qgen,

where ϵ ∼ N(0,σ 2) is a random Gaussian noise where σ is the
standard deviation of z, the embeddings of the previously seen
predicates. G is a simple NN as shown in Table 3. Whereas prior
generative methods use random seeds ϵ as input [19], we find that
generating from z + ϵ is more likely to resemble the new workload.
G is trained together with the discriminator D to formulate a GAN.
10By model design, we refer to model structures (e.g., neural network vs. decision
forest etc.) or hyperparameters.

The Discriminator D is another NN that takes a predicate em-
bedding as input and predicts whether a predicate resembles the
training, new or synthetically generated workload:

z→ D→ l ′ ∈ {gen, new, train}, s ′.

As we will show in §3.3,G andD update in eachWarper invocation;
Warper uses and updates D only in workload drift c2 with inade-
quate incoming queries. Table 3 demonstrates the model parameters
of G and D. Our goal, here, is to use simple models; we find that
these models suffice to handle the wide variety of drifts that we
experiment with. We recommend considering different models or
increasing the model sizes as we show in §4.3 to tune these models
to handle complex future drifts; we also defer more careful model
selection and hyper-parameter tuning to future work.
The Picker P sub-selects a specified number of queries from the
pool which are more useful to update the modelM and thus reduces
the annotation cost. As shown in Alg. 1, the picker has two distinct
use-cases:
• For drift c2, wherein D generates synthetic queries, P uses a
weighted sampling with replacement over those queries (l′ =
gen) based on their confidence score s ′; synthetic queries that
more closely resemble the newly arriving queries are picked.
• For drift c1 and c3, the picker performs a sampling stratified by
the CE error. Specifically, we first cluster all records in the pool
which have cardinality labels into k buckets based on their eval-
uation error over estimates fromM. Next, for each new query
without cardinality labels, we assign it to one of the buckets
based on k-nearest neighbor using its embedding z. Finally, we
pick records from different buckets with replacement to make
a stratified sample. Doing so picks predicates to annotate from
across a wide range of CE errors; we find this leads to a better
model update using a smaller annotation cost.

3.3 Training Warper Components
There are three components in Warper that are learned: the En-
coder E, the Generator G and the Discriminator D. We formulate
training and updating them as an end-to-end, multi-task learning in
update_AutoEncoder() and update_MultiTask() depending
on the drift type and if generating new queries is needed.
update_AutoEncoder: For drift types that do not require gener-
ating new queries (c1 and c3, see Table 2), we train and update an
auto-encoder that consists of the encoder E and the generator G:

q, gt→ E→ z → G→ q̂.

The training goal here is to minimize the reconstruction (L1) loss
between the input query predicate and the recovered one:

LAE = |q − q̂|. (1)

To compute LAE. we use all records from the pool no matter if
ground truth labels are available11. Therefore, the encoder and
the generator can generalize to all three cases (i.e., queries from
the generator, the training, or the new predicate workload). Once
loss functions are computed, training the auto-encoder and up-
dating the weights of E,G follow the standard back-propagation
approach [18].
11gt=-1 when ground truth labels are not immediately available

update_MultiTask:When synthetic queries are needed, the task
here is to update the generator G together with the discriminator D
in a GAN fashion [19]. For each iteration in Line#4-6, G generates a
set of query predicates qgen as described earlier andD distinguishes
them for belonging to {gen, new, train}:

z + ϵ → G→ qgen → E→ z′ → D→ l ′.

The generator loss is defined by:

Lgen = CrossEntropy(l ′, l = new).

The goal here is to generate queries as close to the new workload
as possible and the discriminator classifies the generated query
correctly as new. A CrossEntropy(p,q) = −

∑
x ∈X p(x) logq(x) is

a standard loss function for training classifiers [18].
On the other hand, the discriminator is trained by classifying

the generated queries as well as the existing ones from the pool
(Line#6 where inputs can have all three cases of l):

q, gt→ E→ z → D→ ld .

The discriminator loss is defined by:

Ldiscr = CrossEntropy(l , ld),

so that the discriminator correctly identifies the origin (i.e., training,
newly arrived, or synthetic) of the query predicates. Finally, the
GAN loss is a combination of the generator and the discriminator
losses:

LGAN = Lgen + Ldiscr. (2)
The training simultaneously optimizes Lgen and Ldiscr so that G
and D play against each other and formulate a GAN – minimizing
Lgen so that G generates predicates that can be classified as l ′ =
new despite that actual labels for generated queries are l = gen;
minimizing Ldiscr so that D recognizes the generated predicates.
Unlike a classic GAN training in which a binary label of {new, gen}
is used, here we use a three-class label {gen, new, train}, since
train is not presented in classic GANs and can be sufficiently
different from new.

3.4 Robustness inWarper
We note a few design considerations, caveats and corner cases here.
Early stop in Warper. We use the accuracy gain ofM after each
adaptation step as the stopping criteria; once the gain is less than a
small threshold, det_drft for the next invocation uses a larger π
(§3.1), so that Warper directly uses the previous CE model unless a
larger drift is observed (e.g., due to a new drift). This strategy saves
computations, because possible improvements are already minor at
such a moment. Early stopping also adds robustness to inaccurate
γ and drift type identification; details follow.
Robustness and fallback options inWarper are as follows.
Drift detections: (1) False negatives - in a drift when det_drft
does not trigger (i.e., the accuracy gap of the drift is small or even
negative), Warper uses the existing CE model and no action is
needed, because empirically there is small accuracy degrade already.
(2) False positives, i.e., when there is a large accuracy gap but no
drift, is practically impossible.
Drift type identifications. For data drifts, the underlying database
system should provide reliable signals. Still, in the event of faulty

telemetry: (1) False positives - the bottom line is to re-compute
ground truth andWarper falls back to prior learned CE solutions [10],
which has no negative impact on the model accuracy. (2) False neg-
atives - this is the same as FN in drift detection.

For workload drifts, we know if gt is available from the new
workload and the exact rate of computing gt; hence c3, which
explicitly checks for low or no gt, cannot be confused from c2
or c4. Therefore, with an overestimated γ , det_drft yields c2
instead of c4 and all theWarper modules are used. In such a sce-
nario, there are adequate queries and cardinality labels; theWarper
modules converge quickly which often triggers an early stop in
practice. When γ is underestimated, det_drft yields c4 instead of
c2. Warper falls back to updatingM directly and is no worse than
fine-tuning. We use a simple heuristic here to tune γ in runtime -
when det_drift yields c4 while the accuracy improves slowly,
Warper uses a larger γ since the aforehand signal can indicate an
underestimated γ . Nevertheless, Warper is robust to γ and has a
bottom line for no worse than re-training or fine-tuning.
Adaptation intervals and outliers from the new workload. Since
Warper runs independently to nt – the number of incoming queries
available for each invocation, it is also robust to the adaptation in-
tervals chosen by the users. Indeed, when nt is small, using a mean
error estimation for M brings in uncertainty for a real workload
drift or outliers in the incoming queries, which in turn result in
inaccurate control decisions. However, by the early stop and other
mechanisms discussed above, Warper corrects itself when arrived
queries are adequate.

Choosing a large adaptation interval, as shown by the yellow
box in Figure 2 (a), may cause delayed drift detection. Since det_-
drft has a small overhead, we use frequent Warper invocations in
practice. Besides, Figure 2 (c) shows an example of early stop.

3.5 Implementation Details
We implement a prototype of Warper in Python; G,D and E are
implemented in sklearn and PyTorch with a learning rate of 1e-3
and half-decay after every 10 epochs. The query pool is an in-
memory array, and the annotator A is in C++. Our experiments
were performed on a typical database server with a 12-core Intel
CPU at 2.9GHz and without GPU. We use ni = 100 in task2 and
use an early stopping when the loss converges.

When Itrain that is used to train the original M is available,
the generator G and the encoder E are pre-trained offline using
task1 and the queries from Itrain. In such a manner, the initial
weights of E and G are determined; in our experiments, we find
that this pre-training strategy speedups the GAN convergence in
eachWarper invocation. Such pre-training incurs a one-time cost
that is similar to training the LM [10] model offline.

4 EXPERIMENTS
We evaluateWarper against state-of-the-art adaptation solutions
on a wide scope of drifts. Recall from §3.1 that Warper adapts
periodically to complex and continuous drifts. We also show that
faster adaptation translates to query plan improvements. The goals
of this section are as follows.
T1 (§4.1) When adapting different CE models to different types of

individual drifts, Warper outperforms various baselines, has a

Table Name Cols Rows Distinct count
Real Cat. n Min/Medium/Max

Higgs 28 0 11M 3/6.7K/290K
PRSA 16 2 430K 5/645/35K
Poker 0 11 1M 4/10/13

Table 4: Datasets for evaluation in experiments. Cat.: categorical.

Method to generate {low, high} predicates for column C .
w1 Draw from r (C) uniformly at random.
w2 Draw from a logarithmic transform of r (C).
w3 Equal to a sampled row plus a random width in r (C)
w4 Equal to min(C), max(C) from a sample of k rows.
w5 Equal to a stratified sample row by frequency plus a random width in r (C)

Table 5: Different methods to generate workloads. r (C) denote the
value range in column C .

w34 w125 w35 w124 w5 w4

Figure 5: Visualizing some workloads on PRSA in our experiments.

small CPU cost (e.g., about 1% on a typical database server) and
adapts faster, reaching a similar accuracy in shorter time.

T2 (§4.2) We show end-to-end gains using three select-project-join
queries on TPC-H under continuous drifts. Faster adaptation
leads to a shorter period of query latency regression since the
query optimizer starts picking better plans sooner.

T3 (§4.3) We tease apart the usefulness of different components in
Warper using ablation studies; we also analyze the sensitivity
and costs of using different parameter choices.

4.1 Can Warper help to mitigate drifts?
Datasets. In our experiments, we use the datasets shown in Table 4.
These datasets have a rich variety in terms of row and column
counts, column types, distinctness, and have been used in prior
CE solutions [8, 10]. Further, we leverage the IMDB dataset [31] to
evaluate adapting a join CE model.
Workloads.We have not identified public datasets with realistic
drifts. As shown in Table 5, we use five methods to generate query
predicates which have been applied in [3, 10, 37] to evaluate CE
solutions or are simple modifications to existing methods. For ex-
ample, LM [10] used a mixture of w1+3 in their paper. Using a large
set of workload distributions enables us to better evaluate the gen-
eralizability of various adaptation methods. Figure 5 demonstrates
some workload visualizations using the PCA method in §2.
Metrics. We measure the following key metrics:
Accuracy: Let д, д̂ be the estimated and actual cardinalities, for each
predicate, wemeasure the q-error:qθ (д, д̂) = max(max(д,θ)

max(д̂,θ) ,
max(д̂,θ)
max(д,θ)).

This is a widely used metric [10, 25, 48] so that lower q-error indi-
cates better accuracy and 1 is perfect accuracy; To prevent numeric
error, we use θ = 10 to follow [10]. For each test relation, we mea-
sure the geometric mean of qθ over all predicates (GMQ) also to
follow prior work [10, 25, 48].
Test period and query arrival rate. How fast an adaptation solution
mitigates a drift crucially depends on the time period of the drift

and the query arrival rate being tested. Hence, in our experiments,
we leverage a fixed test time period of 30 mins. As we will show
by the cost analyses in §4.3, the CPU cost incurred by Warper in a
time unit is formulated by cgt +C where the first term is the cost
to annotate queries and the second term is a constant to update
models, etc.; the relative adaptation speedups remain the same with
different arrival rates of new queries, as long asWarper can keep up
with the compute, i.e., average CPU usage is small during the test
period or before the model adapts. We use one test query arrival
per five seconds in the experiments (unless otherwise specified)
and will report costs at different arrival rates.
Computational overhead.We measure the cost ofWarper to build
and apply different learned components and report the latency
aggregated in one thread. For Warper and various baselines, the
costs consist of the time to generate and annotate additional queries
(if necessary) and update the CE model. Warper additionally re-
quires updating its learned components. We report average CPU
utilization on a desktop-grade database server with 12 cores.
Relative adaptation speedup, agnostic to the test period and query ar-
rival rate, evaluates the effectiveness of a model adaptation solution.
For a CE model, accuracy improvements with different numbers of
training examples are nearly monotonic, as shown in Figure 1. Let
α , β , respectively, be the GMQ before and after the drift; we define
∆(A, λ) as the number of queries required for method A to reach a
GMQ at most β + λ(α − β).

We use a relative speedup ∆(FT , λ)/∆(A, λ) by comparing the
numbers of queries required from the new workloads for method A
relative to that for fine-tuning (FT). For example, α = 3.0 and β =
2.0, fine-tuning requires 100 queries to reach a GMQ of 2.5, while
method A requires 50; hence ∆(FT , 0.5)/∆(A, 0.5) = 100/50 = 2,
indicating that A has a 2× speedup to reach half of the possible
improvement compared with FT. In the rest of this paper, we denote
∆.5, ∆.8 and ∆1 for short of ∆(FT , λ)/∆(A, λ) where λ ∈ [.5, .8, 1].
Drift metrics: To measure the severity of a drift, we leverage blind
and intrinsic metrics from the active learning literature [16].
δm: Agnostic to the underlying data or workload drifts, the blind
metric δm captures the accuracy gap between an unmodified model
and the model trained exclusively on the new data and workload.
Such metric is used in det_drft (§3.1) and early stop §3.4.
δjs: We leverage the discrete Jensen-Shannon Divergence [35] as
described in §3.1 to measure the intrinsic distance between two
workloads. We use k = 10 andm = 3 in our experiments.
Baselines. We describe the baselines used in our experiments:
Fine-Tuning (FT) existing models is a well-adopted method to miti-
gate drifts [10, 19]; we use fine-tuning as the baseline to measure
adaptation efficiency for other solutions. The baseline re-trains (RT)
the CE model whenever it cannot fine-tune.
Data Augmentation (AUG): Given limited arrival of new queries,
AUG is one step further than FT to update the CE model using
augmented examples. Data augmentation uses some pre-defined
heuristics or rules and has been widely used in many AI domains to
improve model generalization, e.g., adding salt-and-pepper noises
to the input images [28]. In the database literature, HAL [34] creates
a similar ad-hoc strategy for training ML models for index-tuning.

AUG adds a Gaussian noise (with a standard deviation of 10% of each
column’s value range) to the value in each clause, and it requires
computing ground truth labels for the synthetic queries.
Hard Example Mining (HEM) strengthens the ML model where it
fails and has been widely used in domains such as image object
detection [12, 42]. In our experiments, HEM evaluates a previously
trained model on the newly arrived queries and updates the model
using the queries weighted by evaluation error. We apply the ran-
dom noise described in AUG to robustly build HEM. As a result,
HEM requires computing ground truth labels for the new queries.
Mixture (MIX) is another format of FT to augment the newly ar-
rived examples. It combines queries from the initial training and
the new workloads to update the CE model, which improves the
generalizability of the model. Without generating synthetic sam-
ples and computing additional labels, MIX can be helpful based on
the similarity between the training and the testing distributions.
CE models used in Warper. Recall that Warper is agnostic to the
CE model and works for previously trained models as black-boxes.
We show results with three ML-based estimators.
LM [10] models take a range predicate as input and predict its car-
dinality. The input q = {low1, .., lowd , high1, .., highd } represents
a conjunction of range predicates on d columns (more details in
§2). We use the min and max value of a column to represent one
sided predicates. We follow the logic in [10] - for columns with
categorical values, predicates are integer dictionary identifies, and
we quantized each column into [0,1K] using equi-width bucketing.
The model is about 64KB in size. Note that we do not use additional
features produced by SQL Server as in [10], since they require a
long time unless SQL Server is customized; we defer more details
to the paper [10]. In our experiments, we use a few variants of LM
including one with multi-layer perceptrons (MLPs) and one with
gradient boost trees (GBTs), namely LM-mlp and LM-gbt. These
two models have the same input and output; however, LM-mlp
updates the model by fine-tuning while LM-gbt uses re-training.
We implement both with sklearn. MLP updates with a batch size of
32 and a learning rate of 1e−3, while GBT uses a learning rate of
1e−2. More variants will be discussed in §4.1.2.
MSCN [25] learns a more complex model which uses query predi-
cates, join conditions, and bitmaps as input. The model consists of
a pooling layer on each input and an MLP, which produces cardi-
nality estimates. For single-table CE, we use a simplified version
here by removing the join condition and bitmap inputs. We use
the same predicates and ground truth as LM. To examine join CE,
we construct newly arrived queries by randomly sampling the join
conditions and use the same procedure above to generate predicates
on base tables. MSCN models are 64KB in size and update using
fine-tuning. We use PyTorch for implementation with a batch size
of 32 and a learning rate of 1e−3.
Evaluation method. We evaluateWarper and the baselines with
different data and workload drifts c1-3 in Table 2, and the same
CE model is used in all methods. For c4, Warper falls back to FT
(§3.1) and we do not evaluate explicitly. We run each experiment 10
times and report aggregated metrics, including error and adaptation
efficiency. We evaluate each adaptation method at 0,20%,..,100% of
our test period. nt is then computed relative to time spent and

0 6 12 18 24 30
Adaptation progress in time (min)

3

4

5

6
GM

Q
PRSA

0 6 12 18 24 30
Adaptation progress in time (min)

1.5

2.0

2.5

3.0

3.5

GM
Q

poker

0 6 12 18 24 30
Adaptation progress in time (min)

5.0
7.5

10.0
12.5
15.0

GM
Q

HIGGS

FT
HEM
MIX
AUG
Warper

Figure 6: Comparison of handling workload drifts (c2) using LM-MLP. We show GMQ on the hold-out test set at different adaptation steps with
one new query arriving every five seconds. Table 7a shows the relative speedups ∆. We plot the first and the third quarters on the error bar.

Dataset PRSA Poker HIGGS

Method AUG HEM Warper AUG HEM Warper AUG HEM Warper
Annotation cost* 0.01s/query 0.03s/query 0.39s/query

Model building cost* - 1s 52.1s - 1s 60.5s - 1s 58.5s
Avg 10 min @ 10 q/s arrival 0.27% 0.27% 1.0% 0.74% 0.75% 1.58% 9.95% 9.96% 10.77%
CPU 10 min @ 1 q/s arrival 0.03% 0.03% 0.75% 0.07% 0.07% 0.90% 0.95% 0.96% 1.77%
Usage 30 min @ 0.2 q/s arrival 0.005% 0.01% 0.25% 0.015% 0.019% 0.29% 0.20% 0.20% 0.47%

Table 6: We show cost overhead to adapt a CE model. *: Costs in a single thread. Given different arrival rates of new queries, FT requires a
minimum of 10-30 mins to fully adapt. Using the same amount of time and newly arrived queries and small CPU in extra, Warper achieves
better accuracy than the baselines.

Exp. Dataset Cs Wkld Model δm δjs ∆.5 ∆.8 ∆1

a.Wkld drift PRSA c2 w12/345 LM-mlp 2.4 0.31 7.4 4.8 3.1
(Figure 6) Poker c2 w12/345 LM-mlp 2.0 0.27 7.1 7.3 7.7

Higgs c2 w12/345 LM-mlp 12 0.60 3.8 3.7 3.5

b.Different PRSA c2 w12/345 LM-gbt 0.8 0.31 1.1 1.0 1.0
models Poker c2 w12/345 LM-gbt 1.3 0.27 1.0 3.5 6.8

Higgs c2 w12/345 LM-gbt 9.9 0.6 1.0 1.0 1.2
PRSA c2 w12/345 LM-ply 0.5 0.3 1.9 1.1 1.1
Poker c2 w12/345 LM-ply 1.7 0.3 1.0 1.0 1.1
Higgs c2 w12/345 LM-ply 6.1 0.6 1.0 4.0 1.5
PRSA c2 w12/345 LM-rbf 2.6 0.3 1.5 1.5 1.3
Poker c2 w12/345 LM-rbf 1.6 0.3 2.2 4.3 5.8
Higgs c2 w12/345 LM-rbf 11.5 0.6 1.2 1.3 1.2
PRSA c2 w12/345 MSCN 1.8 0.31 6.2 3.6 3.9
Poker c2 w12/345 MSCN 1.4 0.27 6.0 8.1 3.3
Higgs c2 w12/345 MSCN 9.6 0.6 2.5 5.2 3.2

c.Different PRSA c1 w1-5 LM-mlp 0.4 0 3.0 7.6 1.0
drifts Poker c1 w1-5 LM-mlp 0.9 0 1.3 1.1 1.5

Higgs c1 w1-5 LM-mlp 12 0 1.5 1.0 1.0
PRSA c3 w12/345 LM-mlp 2.1 0.31 1.1 1.1 1.0
Poker c3 w12/345 LM-mlp 1.9 0.27 1.4 1.4 1.2
Higgs c3 w12/345 LM-mlp 0.5 0.60 1.0 1.0 1.0

d.Join CE IMDB c2 w4/w1 MSCN 72 0.52 2.1 2.8 1.1

Table 7: Warper with different CE models, drifts and workload dis-
tributions; results are aggregated over 10 runs.

query arrival rate. Warper, AUG and HEM synthesize nд = 10%nt
queries in each adaptation step to lower the annotation cost; we
will show a sensitivity analysis in §4.3 with different choices of
nд and nt . Warper uses a fixed np = 1K in the picker; AUG and
HEM randomly sample the same number of queries from different
distributions to matchWarper.

4.1.1 Results and discussions. We first examine workload drift c2
in which all Warper components are used, whereas other cases use
only a subset (see §3). Evaluations of other CE models, types of
drift and workload changes will be discussed in §4.1.2.
Adaptation speedups. Table 7a demonstrates model adaptation
on three datasets with LM-mlp, while Figure 6 shows the progress
at different adaptation steps. Our observations are two-fold.

Old (training) New (incoming) Generated Picked
t = 12 min t = 18 min t = 30 min

Figure 7: Visualization of adaptation on the PRSA dataset with c2
drift and workload w12/345.

First, we note that speedups here are already agnostic to and
normalized by the query arrival rate. When more queries from the
new workload arrive, all adaptation methods improve the accuracy
and Warper adapts faster than other baselines. For example, on
the PRSA dataset, Warper reduces the GMQ to 4.8 (i.e., 50% of
possible improvement) at 3.3min;Warper provides a ∆0.5 = 7.4×
speedup at this accuracy compared with FT at 25min. We observe
large speedups provided byWarper on all test datasets. With higher
accuracy required, the gains are less in general; e.g., ∆1 decreases
to 3.1× on the PRSA dataset. The last bit of accuracy improvements
may have to come from the real incoming queries.

Next, MIX occasionally outperforms FT slightly without addi-
tional queries used in the model update; HEM and AUG perform
better with additional queries but are not as good asWarper. These
adaptation solutions are ad-hoc and often require careful heuristics
design to generate new queries. In practical systems, the use cases
of these baselines remain unclear.
Qualitative results. Figure 7 demonstrates different sets of queries
using the PCA visualization discussed in §2. As the adaptation
proceeds over time, we find that the generated (in green) and picked
queries (in red) in general follow the incoming query distribution
(in orange). A small portion of generated queries near the middle
of the diagonal do not follow either old or new distributions; we
found that these queries help the adaptation.

Exp. Wkld δm δjs ∆.5 ∆.8 ∆1

d. Different w1/2 1.1 0.35 3.8 3.8 4.0
workload w1/3 16.0 0.43 3.2 4.4 6.2

w1/4 5.2 0.41 5.2 4.8 6.2
w2/3 13.7 0.32 7.9 5.5 4.2
w2/4 5.2 0.34 8.9 8.6 8.0
w5/3 14.7 0.30 4.7 5.7 3.4
w5/4 4.4 0.22 4.6 3.8 1.6

w34/125 0.1 0.28 1.3 1.5 1.5
w35/124 0.2 0.26 4.5 1.2 1.1
w125/34 9.2 0.25 12.7 12.1 1.4

Table 8:Warper with different workload distributions on PRSA.

Adaptation costs.Here, we measure the costs incurred byWarper.
Table 6 breaks down the costs ofWarper and alternatives at various
query arrival rates. Note that all these methods update the CE
model, which only takes a few seconds. FT andMIX do not incur
any additional cost unlike the other methods.

At each adaptation step, Warper’s costs consist of updates to
internal components, generating synthetic queries when needed
(< 1 second), and computing the ground truth. To adapt a CE
model to the workload drift, Warper incurs a compute overhead of
about 0.25% to 10.8% CPU usage depending on the query arrival
rate. For any arrival rate, a system can choose to (1) adapt immedi-
ately, which has the highest instantaneous CPU usage, or (2) spread
the adaptation cost over a longer duration. For instance, when 10
queries arrive per sec on the PRSA dataset,Warper may use 1.8%
CPU over 10 min, or use 0.47% over 30 mins. Furthermore, these
numbers are from an unoptimized prototype in python; cost reduc-
tion optimizations could be helpful in future work. Nevertheless,
the costs are already small and insignificant in comparison to the
alternatives and do not hold back Warper from keeping up with all
the cases in Table 6.

Note that when new queries arrive at a higher rate (e.g., 1K q/s
in 10 mins) than the cases shown in Table 6,Warper cannot keep
up (CPU usage >100%).Warper either spreads the adaptation in a
longer period or uses c3 or c4 mode with det_drft (§3).

AUG and HEM annotate additional queries and are cheaper than
Warper but do not adapt as fast as Warper. FT and MIX do not use
additional queries and are the most efficient solutions; however,
they do not offer fast adaptation asWarper and other baselines.

4.1.2 Generalization inWarper. Beyond the c2 case shown above,
we are interested in how Warper can generalize to other models,
types of drifts and workload changes.
Adapting for different models. Instead of LM-mlp, we now use
LM-gbt, with a Gradient Boosting Tree regressor which re-trains,
and MSCN which fine-tunes for single-table CE. In addition, we use
LM-ply with a 5-degree polynomial-kernel SVM as the regression
model in LM, as well as LM-rbf with a Radial Basis Function (RBF)-
kernel SVM [6]. Other settings remain unchanged. Table 7b shows
the results on two datasets and we show ∆ speedups at different ac-
curacy targets. Relative to fine-tuning or re-training using the same
CE model and dataset,Warper still provides promising speedups
for MSCN. On the PRSA and Higgs datasets, Warper only slightly
improves adaptation for LM-GBT. In all cases, Warper performs no
worse than FT or RT. Warper can help and accelerate adaptation
for these different models. We also found that a linear-kernel SVM
did not work as a CE model (has a high error) and hence does not

worth further adaptation; this is as expected since predicates are
non-linear [10].
Adapting to different drifts. In a data drift c1, all labels from the
training set Itrain become outdated. For the data drift experiment,
we sort the dataset by one column and truncate the table in half
to differentiate the data distributions. The ground truth labels are
computed by querying the updated data table. The test workload
remains unchanged as Itrain; Warper picks useful queries to label
(recall the picker described in §3.2) and updates the CE model. Our
experiments similarly run periodically; we compareWarper with
FT that fine-tunes M by randomly picking the same numbers of
queries to annotate from the training set. Table 7b demonstrates the
results. At different accuracy targets, we observe various speedups
due to saved annotations.

In a workload drift c3, ground truth labels from the training set
Itrain are valid, but the newly arrived queries are not companied
with gt labels. The Warper picker works similarly as in c1. Our
experiment runs periodically to pick and annotate queries from
the newly arrived queries. At each adaptation step, we compare
Warper against FT, which uniformly picks the same amount of
queries at random for annotation. Table 7c demonstrates the results
andWarper adapts faster with a fixed annotation budget compared
with FT on randomly annotated samples.

In both cases above, Warper only uses the picker; the overhead
caused by Warper is only updating the learned modules and is
smaller than c2 as shown earlier and in the extended report [2].
Adapting for differentworkload changes.We consider the case
of c2 but vary the training and new workloads as illustrated in
Table 8. As shown in the results, different workload distributions
exhibit different adaptation speedups with median ∆0.5,∆0.8,∆1
being 4.7, 4.6 and 3.7 while recall the results in §4.1.1 for 7.4, 4.8
and 3.1 respectively. Notably, speedups are less significant when
the accuracy gap is already small (e.g., δm ≤ 0.2). We also observe
that the accuracy gap in drifts δm can be uncorrelated with the
intrinsic distribution difference δjs, but both are useful metrics. CE
models that are explainable remain an open question among learned
database components. Figure 8 further demonstrates the adaptation
progress on various datasets and query distributions. To this end,
we considerWarper useful and robust to different distributions of
workload drift.
Adapting for joinCE.As shown in Table 7d, we examined join car-
dinality estimation with the MSCNmodel on the IMDB dataset with
an arrival rate of one new query per minute; other settings remain
unchanged as above. We randomly generated 16K join queries to
pre-train the MSCN estimator with a 128K storage budget. Warper
achieved ∆0.5,∆0.8 and ∆1.0 at 2.1x, 2.8x, 1.1x. That said, we con-
sider Warper generic and agnostic to various CE models that need
to be adapted.
Remark.Warper offers a reasonable cost-speed tradeoff and can
be a useful alternative to FT when the cost overhead is affordable.
We report supplementary results in the extended report [2]; we
observe similar findings on other datasets and tasks.

In all test cases and datasets (Table 7 and 8), we observe that
Warper performs no worse than FT (∆ ≥ 1), and applyingWarper is

0 6 12 18 24 30
Adaptation progress in time (min)

5

10

15

GM
Q

PRSA: w1 w3

0 6 12 18 24 30
Adaptation progress in time (min)

2
3
4
5
6
7
8

GM
Q

PRSA: w1 w4

0 6 12 18 24 30
Adaptation progress in time (min)

3
4
5
6
7
8

GM
Q

PRSA: w5 w4

0 6 12 18 24 30
Adaptation progress in time (min)

4
6
8

10
12

GM
Q

PRSA: w1, w2, w5 w3, w4

0 6 12 18 24 30
Adaptation progress in time (min)

2

3

4

GM
Q

Poker: w1 w3

0 6 12 18 24 30
Adaptation progress in time (min)

2

3

4

GM
Q

Poker: w1 w4

0 6 12 18 24 30
Adaptation progress in time (min)

1.5
2.0
2.5
3.0
3.5
4.0

GM
Q

Poker: w5 w4

0 6 12 18 24 30
Adaptation progress in time (min)

1.5
2.0
2.5
3.0
3.5
4.0

GM
Q

Poker: w1, w2, w5 w3, w4

FT
HEM
MIX
AUG
Warper

0 6 12 18 24 30
Adaptation progress in time (min)

0

50

100

150

200

GM
Q

HIGGS: w1 w3

0 6 12 18 24 30
Adaptation progress in time (min)

5

10

15

20

25

GM
Q

HIGGS: w1 w4

0 6 12 18 24 30
Adaptation progress in time (min)

5

10

15

20

25

GM
Q

HIGGS: w5 w4

0 6 12 18 24 30
Adaptation progress in time (min)

20

40

60

GM
Q

HIGGS: w1, w2, w5 w3, w4

Figure 8: We demonstrate adaptation in workload drift c2 using LM-MLP with training and newly arrived workloads described in the figure
title, e.g., w1→ w3 indicates that the model is trained on workload w1 and is tested when the workload drifts to w3.

less likely to cause degradation. This is perhaps because the newly
arrived queries are still used to update the CE model as in FT.

4.2 Can Warper deliver end-to-end gains?
Here, we consider how model adaptation affects end-to-end query
performance. Query plans of complex queries can be hard to ana-
lyze; hence, for ease of description, we show results on queries for
the simple select-project-join template shown in Figure 1 over the
Lineitem and Orders tables of TPC-H at a scale factor of 10. Our
results use a production query optimizer (QO); as shown in Table 9,
we perform three different experiments which aim to trigger the
following plan changes:
S1 Buffer spills. The intermediate results of a join input will spill

to a temporary table when the predicate cardinality is under-
estimated; spills are wasteful and delay the query execution.
Over-estimates waste memory but have little impact on latency.

S2 Nested loop vs. hash join. When both join inputs are estimated
to have a small cardinality, the QO picks nested loop joins over
hash joins. Underestimates significantly degrade latency since
nested loop join is inefficient when the inner loop is large. Here
too, overestimates have only a minor latency impact.

S3 Choice of which side to build the bitmap. In parallel (multi-
threaded) executions, the QO builds a bitmap on the join input
with the smaller estimated cardinality and applies the bitmap on
the other input to reduce the number of rows that go through
the join operation. Choosing the wrong input on which to build
the bitmap can degrade latency.
We generate 100 test queries from the same template that is

used in training and run them using single or multiple threads
as described in Table 9. We do not use indexes here since adding
indexes further complicates the query plan choice. Table 9 also

Query setting Executed as: Predicate on Latency gap

S1 - Buffer spill Single thread L 2.1×
S2 - Join type Single thread L, O 306×
S3 - Bitmap distr. Multi-thread L, O 5.3×

Table 9: Queries used in this section. Latency gap indicates the max
latency difference between plans with accurate and inaccurate CE.

shows that S1-3 have different severity of latency regression; for
example, with S1, the maximum latency degradation is 2.1×, i.e.,
queries took over twice as long to finish when using imperfect
cardinality estimates compared to the plans generated when using
the true cardinalities.

We build a CE model for predicates on both tables and study
how model adaptation affects CE errors and thus end-to-end query
latency in continuous drifts of three kinds. The seed CE model that
we begin with has been trained with workload w1 from Table 8.
Each drift demonstrates a case from §3.1 and Figure 2: (1) Drift A
changes workload from w1 to w2; see Table 8; (2) Drift B is also a
workload drift that changes just the first half of each period to w4,
and (3) Drift C combines a workload drift (back to w1) with a data
drift (as described in §4.1.2).

Our experiment ran periodically as in the previous section, and
we measured the GMQ of the test queries in each adaptation step.
We also measure the average query latency by executing the query
plans that would have been generated using the predicted cardinal-
ities (we do so by changing the cost estimates of the memo groups
accordingly inside the QO). We clear all system caches between
successive query executions.

Figure 9 shows the CE accuracy on predicates and the query
latency for each of S1-3. Comparing Warper with FT which adapt
at the same period, we draw the following conclusions.

1

10

G
M

Q
CE error on Lineitem (L)

FT
Warper

Drift A Drift B Drift C

1

10

0 30 60 90

G
M

Q

CE error on Orders (O)

30
40
50
60

Av
gL

at
en

cy
(s

) S1 latency (predicate on L) - Buffer spill

0
200
400
600

Av
gL

at
en

cy
(s

) S2 latency (predicates on L,O) - Join type

0
10
20
30

0 30 60 90

Av
gL

at
en

cy
(s

)

Adaptation progress over time (min)

S3 latency (predicates on L,O) - Bitmap distr.

Figure 9:We show that fastermodel adaptation results in query per-
formance gains in three cases and in continuous drifts.

First, drifts lead to higher GMQ and latency regressions due
to suboptimal plan choice. We see that without adaptation the CE
accuracy can be up to 1000× off. For the considered scenarios, S1-3,
the average latency regression is 30%-300% without adaptation.
When predicates are present on both join input and/or the chosen
plan has a nested loop join, we observe up to 306× worse latency,
which is perhaps catastrophic. As the figure shows, fast model
adaptation greatly reduces latency regressions by offering better
cardinality estimates sooner.

Next, we observe that different drifts have different effects. Across
S1-3 and across all drifts,Warper adapts faster than FT. The speedup
is particularly significant in S1 Drift A, whereWarper converges
in about 12 minutes while FT does not catch up even at the end of
30 minutes.Warper reduces by more than half the total duration
for which queries regress. The improvements in other scenarios
are sizable as well.

We note that it is non-trivial to connect improvements in the
accuracy of cardinality estimates to improvements in query latency,
especially for complex queries [4]. Our results show a few simple
cases where the gains are sizable, but it is not clear what the im-
provements will be with a different query optimizer, a different
DBMS engine, or a different query set. We also point out that the
drifts used here are hypothetical, and it is not fully clear what types
of drifts occur in practice. Nevertheless, we point out that an inex-
pensive and fast adaptation would be a useful addition, although
more evaluation is necessary to quantify the added value.

4.3 Ablation and hyperparameter analyses
Similar as §4.1.1, we leverage workload drift c2 in which allWarper
components are used. This facilitates the ablation and sensitivity
analyses in this section.

Dataset Warper P→rnd pick P→entropy G→AUG

∆0.8
PRSA 4.8 3.3 3.8 4.6
Poker 7.3 1.3 6.7 6.9

∆1
PRSA 3.1 2.0 3.2 3.2
Poker 7.7 1.0 1.6 6.9

Table 10: Replacing learned Warper components with alternatives.

0 6 12 18 24 30
Adaptation progress in time (min)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

GM
Q

PRSA

0 6 12 18 24 30
Adaptation progress in time (min)

1.5

2.0

2.5

3.0

3.5

GM
Q

poker

2 layers x 128neurons
3 layers x 64neurons
3 layers x 128neurons
3 layers x 256neurons
4 layers x 128neurons

Figure 10: Varying the NN hyperparameters in E and G.

Understanding Warper components. We perform an ablation
study here and Table 10 evaluates two variants of Warper. For
workload drift c2, we replace the query generator G and the picker
P with alternatives. That is, we replace G with adding Gaussian
noise to the newly arrived queries and replace Pwith simply picking
the queries uniformly at random. Results on two datasets show that
both variants demonstrate slower adaptation than Warper. Hence,
we consider the generator and picker inWarper to be necessary.

We also replace the picker in Warper with an entropy-based
active learning model which performs uncertainty sampling by
calculating and weighting the cross-entropy for each query; queries
with higher entropy have higher probabilities to be selected. The
entropy-based method performs better than the naive random sam-
pling picker but is inferior to the picker used inWarper.
Model hyperparameters. We show different NN structures in
Figure 10 to replace the structures used in Table 3. Results indicate
that hyperparameter tuning may improve the performance but
concrete choices are unclear at this point; we aim at a simple and
effective solution in this paper and we defer hyperparameter tuning
to future work.
Cost analysis and budgeting inWarper. LetB be the cost budget
on a CPU and cgt be the cost to annotate additional queries. Costs
in aWarper adaptation step can be summarized as: cgen + cpick +
cgt + cAE + cGAN + cModel ≤ B. In practice, cgen and cpick, which
depict the costs to generate and pick queries respectively, are both
small and can be done within a second since we use simple models.
cModel, the cost to update the CE model, is a constant overhead no
matter if Warper kicks in. cAE is a constant overhead to compute
LAE and to update related models, which depends on the model
sizes and other hyperparameters in the auto-encoder training. cGAN
is also a constant overhead to compute LGAN and to update related
models, which depends on the model sizes and the number of
queries generated in the GAN update loop. We use

cgt +C ≤ B

as a proxy to the cost, whileC can be measured by runtime profiling,
and cgt is nearly linear to the number of queries that need to be
labeled na . From this formulation, we can see that with different

0 6 12 18 24 30
Adaptation progress in time (min)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

GM
Q

PRSA

0 6 12 18 24 30
Adaptation progress in time (min)

1.5

2.0

2.5

3.0

3.5

GM
Q

poker

0.1 x
0.2 x
0.3 x
0.5 x
1.0 x
2.0 x
3.0 x

Figure 11: Trading compute for adaptation speedup. We vary the
number of generated queries nд and show the speedups. n× indi-
cates nд = n × nt generated.

Dataset PRSA Poker

nд 0.1× 0.3× 1× 3× 0.1× 0.3× 1× 3×
Anno. 1.2s 3.6s 12.1s 36.3s 3.2s 9.6s 31.9s 95.7s
Model const 52.2s (0.24% CPU usage) const 60.6s (0.28% CPU usage)
CPU 0.25% 0.26% 0.30% 0.41% 0.29% 0.33% 0.43% 0.72%

Table 11: Trading compute for adaptation speedup. We show the ad-
ditional CPU utilization when nд varies as multiplies of nt with an
adaptation period 30min and one query arriving per five seconds.

query arrival rates, if the CPU usage is within the budget and
Warper keeps up in compute, the relative adaptation speedups
remain the same; the only difference is in the CPU usage ratio.
Warper uses more CPU with a higher query arrival rate – more is
spent in computing ground truth labels.

A key question now is how many queries nд should the gener-
ator produce to update M, because only these queries will affect
theWarper cost due to annotation. In Figure 11 and Table 11, we
test the effect of using different numbers of generated queries rela-
tive to the number of observed queries nt . Results with workload
drift c2 at different adaptation steps show that using more gener-
ated queries does not necessarily accelerate the model adaptation
but will increase the CPU utilization due to more queries being
generated and annotated. In practice we use nд = 10%nt in each
minibatch for a low annotation cost12. As shown in Table 6, for
larger datasets, the annotation may become a large overhead when
generating more queries. For example, on the HIGGs dataset, when
generating nд = nt queries, the overall CPU utilization goes up
from 0.47% to 2.3% over 30 mins when one query arrives every five
seconds. While improving the annotation efficiency for each query
predicate (e.g., by using AQP or the technique in [9]) is orthogonal
to this paper, a constant cost C still needs to be paid; when the
budget B is less than C , which translates to overall 0.25% CPU
utilization in our experiments over 30 mins, we recommend using
FT/MIX that minimizes overhead.

5 RELATEDWORKS
Learned CE models. Recent advances have exploited various ma-
chine learning models to provide fast and accurate cardinality esti-
mations [10, 17, 44, 48]. In data and workload drifts, prior solutions
have to re-train the model at different costs using the observed
new queries. We focus on a generic solution that treats the CE
models as black boxes with only input queries. Warper shows a

12Warper disables the generator when nд < 1 in our experiments.

faster adaptation compared with re-training or fine-tuning existing
models, as well as augmentation using different strategies.
Handling drifts in active learning.Active learning [41] has been
widely applied in production such as ads and recommendation sys-
tems [32], especially in a streaming setting; [16] provides a survey
on different aspects of active learning with good depth and width.
A machine learning model learns from a distribution p(y |X) in
which X is the training example and y is the ground truth label. A
change in the distribution of X is often referred as concept drift, and
a change in p(y |X) as covariant drift. For instance, [26] provides
several examples of data drifts on image and molecular datasets. In
the CE problem, the data table D is an additional hidden variable,
i.e., a learned CE model captures X ,D → y that is conditioned on
both workload and data table. That said, changing data X or chang-
ing workload D are both concept drifts. Different solutions have
been proposed to (1) build ensemble models and perform model
selection so that the best model is used for the current input pattern,
or (2) use an augmented workload that combines observation win-
dows from the training and testing streams and hence updates the
ML model periodically. Recent augmentation solutions [34, 38, 47]
also generate new examples of X , compute p(y |X) and update the
ML model, which can bring unseen generated queries and their
annotations to help.
GANs. One related use case is in generating synthetic data to reduce
annotation costs [5, 45]. Unlike prior solutions in which annotation
costs are often sparse or delayed, generating new examples incurs
immediate annotation costs for learned database components. On
the other hand, GANs have been applied in other problems in DMBS.
[11] leverages GAN to synthesize relational data that has a similar
distribution as the original data table while preserving privacy
during model training and generation. To the best of our knowledge,
Warper is the first system for mitigating data and workload drifts
for learned database components.

6 CONCLUSIONS
We demonstrate a machine learning system Warper that aims to
improve a previously trained cardinality estimation model in the
context of data and workload drifts. The key ideas include using
generated queries from a Generative Adversarial Network (GAN)
and picking among the available queries to annotate. We show
that with small computational costs, Warper has good applicability
and accelerates model adaptation which translates to query perfor-
mance gains. Practitioners should consider Warper as an option to
improve existing CE models if the cost overhead is affordable.

REFERENCES
[1] 2022. TPC-H Benchmark. http://www.tpc.org/tpch/.
[2] 2022. Warper: Efficiently Adapting Learned Cardinality Estimators to Data and

Workload Drifts - Extended Report. http://www.beibinli.com/docs/warper_
extended_report.pdf

[3] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multi-
dimensional Workload-aware Histogram. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 211–222.

[4] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational Sys-
tems. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium
on Principles of database systems. 34–43.

[5] Jaehoon Choi, Taekyung Kim, and Changick Kim. 2019. Self-ensembling with
GAN-based Data Augmentation for Domain Adaptation in Semantic Segmen-
tation. In Proceedings of the IEEE Conference on Computer Vision and Pattern

http://www.tpc.org/tpch/
http://www.beibinli.com/docs/warper_extended_report.pdf
http://www.beibinli.com/docs/warper_extended_report.pdf

Recognition. 6830–6840.
[6] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector Networks. Machine

learning 20, 3 (1995), 273–297.
[7] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. 2015. Learning

in Nonstationary Environments: A Survey. IEEE Computational Intelligence
Magazine 10, 4 (2015), 12–25.

[8] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml.

[9] Anshuman Dutt, Chi Wang, Vivek Narasayya, and Surajit Chaudhuri. 2020.
Efficiently Approximating Selectivity Functions Using Low Overhead Regression
Models. Proceedings of the VLDB Endowment 13, 12 (2020), 2215–2228.

[10] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity Estimation for Range Predicates Using
Lightweight Models. Proceedings of the VLDB Endowment 12, 9 (2019), 1044–1057.

[11] Ju Fan, Junyou Chen, Tongyu Liu, Yuwei Shen, Guoliang Li, and Xiaoyong Du.
2020. Relational Data Synthesis Using Generative Adversarial Networks: A
Design Space Exploration. Proceedings of the VLDB Endowment 13, 12 (2020),
1962–1975.

[12] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. 2008. A Discrimi-
natively Trained, Multiscale, Deformable Part Model. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 1–8.

[13] Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Goldberger,
and Hayit Greenspan. 2018. GAN-based Synthetic Medical Image Augmentation
for Increased CNN Performance in Liver Lesion Classification. Neurocomputing
321 (2018), 321–331.

[14] Jerome H Friedman. 2002. Stochastic Gradient Boosting. Computational statistics
& data analysis 38, 4 (2002), 367–378.

[15] Sylvia Frühwirth-Schnatter. 1994. Data Augmentation and Dynamic Linear
Models. Journal of Time Series Analysis 15, 2 (1994), 183–202.

[16] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A Survey on Concept Drift Adaptation. ACM Computing
Surveys (CSUR) 46, 4 (2014), 1–37.

[17] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity Estimation
Using Probabilistic Models. In Proceedings of the ACM SIGMOD International
Conference on Management of Data.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
press.

[19] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems. 2672–2680.

[20] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and JunWang. 2018. Long
text generation via adversarial training with leaked information. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 32.

[21] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
Proceedings of the VLDB Endowment 13, 7 (2020).

[22] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. 2018. Cycada: Cycle-Consistent Adversarial
Domain Adaptation. In International Conference on Machine Learning. PMLR,
1989–1998.

[23] Weixiang Hong, Zhenzhen Wang, Ming Yang, and Junsong Yuan. 2018. Con-
ditional generative adversarial network for structured domain adaptation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
1335–1344.

[24] Tero Karras, Samuli Laine, and TimoAila. 2019. A Style-based Generator Architec-
ture for Generative Adversarial Networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 4401–4410.

[25] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons
Kemper. 2018. Learned Cardinalities: Estimating Correlated Joins with Deep
Learning. Proceedings of the 2018 Conference on Innovative Data Systems Research
(CIDR) (2018).

[26] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution
shifts. In International Conference on Machine Learning. PMLR, 5637–5664.

[27] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 489–504.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, Vol. 25. 1097–1105.

[29] Solomon Kullback. 1997. Information Theory and Statistics. Courier Corporation.
[30] Kundan Kumar, Rithesh Kumar, Thibault de Boissiere, Lucas Gestin, Wei Zhen

Teoh, Jose Sotelo, Alexandre de Brébisson, Yoshua Bengio, and Aaron C Courville.
2019. Melgan: Generative adversarial networks for conditional waveform syn-
thesis. In Advances in Neural Information Processing Systems. 14910–14921.

[31] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good are Query Optimizers, Really? Proceedings
of the VLDB Endowment 9, 3 (2015), 204–215.

[32] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. 2015.
Recommender system application developments: a survey. Decision Support
Systems 74 (2015), 12–32.

[33] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.
Accelerating Machine Learning Inference with Probabilistic Predicates. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
1493–1508.

[34] Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. 2020. Active Learn-
ing for ML Enhanced Database Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 175–191.

[35] ChristopherManning andHinrich Schutze. 1999. Foundations of Statistical Natural
Language Processing. MIT press.

[36] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul23. 2019. Neo: A Learned
Query Optimizer. Proceedings of the VLDB Endowment 12, 11 (2019).

[37] Magnus Müller, Guido Moerkotte, and Oliver Kolb. 2018. Improved Selectivity
Estimation by Combining Knowledge from Sampling and Synopses. Proceedings
of the VLDB Endowment 11, 9 (2018), 1016–1028.

[38] Hieu T Nguyen and Arnold Smeulders. 2004. Active Learning Using Pre-
clustering. In Proceedings of the twenty-first International Conference on Machine
Learning. 79.

[39] Alexander J Ratner, Stephen H Bach, Henry R Ehrenberg, and Chris Ré. 2017.
Snorkel: Fast Training Set Generation for Information Extraction. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 1683–1686.

[40] Veit Sandfort, Ke Yan, Perry J Pickhardt, and Ronald M Summers. 2019. Data
Augmentation Using Generative Adversarial Networks (CycleGAN) to Improve
Generalizability in CT Segmentation Tasks. Scientific reports 9, 1 (2019), 1–9.

[41] Burr Settles. 2009. Active Learning Literature Survey. (2009).
[42] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. 2016. Training Region-

based Object Detectors with Online Hard Example Mining. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 761–769.

[43] PY Simard, D Steinkraus, and JC Platt. 2003. Best Practices for Convolutional
Neural Networks Applied to Visual Document Analysis.. In Seventh International
Conference on Document Analysis and Recognition, 2003. Proceedings. IEEE, 958–
963.

[44] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2013. Efficiently
Adapting Graphical Models for Selectivity Estimation. The VLDB Journal 22, 1
(2013).

[45] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. 2018.
Low-shot Learning from Imaginary Data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 7278–7286.

[46] SvanteWold, KimEsbensen, and Paul Geladi. 1987. Principal Component Analysis.
Chemometrics and Intelligent Laboratory Systems 2, 1-3 (1987), 37–52.

[47] Donghui Yan, Ling Huang, and Michael I Jordan. 2009. Fast Approximate Spectral
Clustering. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 907–916.

[48] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
Unsupervised Cardinality Estimation. Proceedings of the VLDB Endowment 13, 3
(2019), 279–292.

[49] Dong Yu and Li Deng. 2016. Automatic Speech Recognition. Springer.
[50] Xiaojin Jerry Zhu. 2005. Semi-supervised Learning Literature Survey. (2005).

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design of Warper
	3.1 Detect, identify, and adapt to drifts
	3.2 Using Warper Components
	3.3 Training Warper Components
	3.4 Robustness in Warper
	3.5 Implementation Details

	4 Experiments
	4.1 Can Warper help to mitigate drifts?
	4.2 Can Warper deliver end-to-end gains?
	4.3 Ablation and hyperparameter analyses

	5 Related Works
	6 Conclusions
	References

