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Abstract

Convexity (concavity) is a bottom-up cue to assign
figure-ground relation in the perceptual organization [18].
It suggests that region on the convex side of a curved bound-
ary tend to be figural. To explore the validity of this cue in
the task of salient object detection, we segment the images
in a test dataset into superpixels, and then locate the con-
cave arcs and their bounding boxes along boundary of su-
perpixels. Ecological statistics indicate that such bounding
box contains salient object with a large probability.

To utilize this spatial context information, i.e. concav-
ity context, we follow the multi-scale analysis of human vi-
sual perception and design a hierarchical model. The model
yields an affinity graph over candidate superpixels, in which
weights between vertices are determined by the summa-
tion of concavity context on different scales in the hierar-
chy. Finally a graph-cut algorithm is performed to separate
the salient and background objects. Evaluation on MSRA
Salient Object Detection (SOD) dataset shows that concav-
ity context is effective, and our approach provides improve-
ment over state-of-the-art feature-based algorithms.

1. Introduction
Salient object refers to foreground object which attracts

more visual attention [15]. Detecting salient object can be
formulated as a binary labeling problem aiming to assign
figural and background regions. In the perceptual orga-
nization, this process is called figure/ground organization
(FGO) [18]. It is a high level cognition process which has
been studied by the Gestalt psychologists since 1920s. Al-
though many rules for the FGO have been identified, includ-
ing low-level feature cues like contrast [24] and spatial fre-
quency, geometric cues like symmetry and convexity [13],
as well as semantic cues like object familiarity [19], etc.1,
mechanism of FGO is still complex and not certain.

Fortunately, inspired by the neuronal architecture of the
early primate visual system, Itti and his colleagues [12]

1For more information about FGO, please see http://www.
scholarpedia.org/article/Figure-ground_perception

Figure 1. (1) Original image. (2) Segment using [6]. The curve
in yellow is one concave arc of superpixel A. The rectangle in red
is bounding box of the arc (CCW). Concavity context thus en-
codes the occurrence of salient (figural) and background objects
in CCWs.

cleverly simplified the process of FGO and merely focus on
low-level features to compute bottom-up attention. In their
model, center-surround difference of multiple features are
incorporated into a dynamic neural network, which makes
it possible to determine where in an image the object with
visual saliency might occur. Following their opinion, low-
level features such as contrast and color become the first
choice for many state-of-the-art saliency detection algo-
rithms [31, 14, 8, 32, 2, 15, 16, 9, 11]. For instance, Liu
et al. [15] take advantage of a conditional random field to
combine features in local, regional and global scales. The
features consist of multi-scale contrast, center-surround his-
togram and color spatial distribution. Achanta et al. [2] suc-
cessfully perform a rapid frequency-domain analysis using
low-level features of color and luminance.

However, detecting low-level feature saliency is not the
only way to FGO. In this paper, we utilize a different cue
of convexity (concavity), rather than low-level features, to
detect salient object. This generic shape cue is proposed by
Gerbino et al. [13]. Their experiments on human trials us-
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ing some elaborately designed image patterns (stimuli) sug-
gest that, region on the convex side of a curved boundary
tend to be figural. Later in the literature, Fowlkes et al. [7]
conduct experiments on hand-segmented images by defin-
ing convexity as the probability that a line segment connect-
ing two points in a region lies completely within the region.
They prove that convexity has the discriminative power of
assigning to which region a contour will belong. Ren et
al. [22] further design a model to cluster local shapes along
object contours. They believe patterns of clustering cen-
ters reveal the figure-ground relation. Although the pioneer
works have successfully explored the feasibility of generic
shape cues in the FGO under some circumstances, there’s
still a distance from practice. We wonder if this cue is still
valid on real-world images that are not perfectly segmented.
Furthermore, our purpose is to classify regions and detect
salient objects, which is more than to assign contours in
[7, 22].

Therefore, we first oversegment the images into super-
pixels and thus detect concave arcs for the contour of each
superpixel (see Figure 1 for example). Concave arc is the in-
curved part of a superpixel boundary with local maximum
concavity (convexity on the opposite). Different from [7],
we use it to measure the figure-ground relation. After that,
we define Concavity Context Window (CCW) as bounding
box of the concave arc. The concavity context thus encodes
the occurrence of salient (figural) and background objects
inside CCWs. In Section 2, ecological statistics show that
about 81% of the CCWs contain salient objects on a test
dataset, comparing with the random chance of 60% on av-
erage. This reveals that the cue of convexity (concavity)
also bias the figure-ground relation on non-perfectly seg-
mented images, and such concavity context information is
very helpful to the detection of salient object.

The rest of the paper is organized as follows. In Section
2, a statistical study on the concavity context is introduced
in detail. The framework of our approach is described in
Section 3. Section 4 evaluates our approach and compares
with several feature-based algorithms. Our paper ends in
Section 5 by giving a conclusion.

2. Ecological Statistics on Concavity Context
For a given concave arc e, there are three kinds of con-

cavity context inside its corresponding CCW R (see Figure
2 for example):

1. Both sides of e are salient (figural) objects (F-F).
2. Both sides of e are background objects (G-G).
3. There are different objects on the two sides of e (F-G).
We randomly choose 240 images from MSRC-21 [28],

PASCAL VOC 2008 [5], and SUN [29] (80 images from
each dataset). These three datasets have different complex-
ity of figure-ground relations. We use Felzenswalb’s graph-
cut algorithm [6] to segment the images into 6-8 superpix-

Figure 2. Examples of CCWs. Left: origin images. Right: seg-
ment using [6]. F: salient (figural) object, G: background object.
Rectangles in (1) yellow: F-F; (2) blue: G-G; (3) red: F-G.

Dataset MSRC VOC08 SUN Avg
Case 1. F-F 48/19% 114/21% 112/26% 22%
Case 2. G-G 46/19% 124/23% 69/16% 19%
Case 3. F-G 154/62% 297/56% 254/58% 59%

Total # 248 535 435 /
Avg CCW Size 29%×27% 21%×22% 23%×21% /

Chance 66% 58% 57% 60%

Table 1. Row 1-4: Frequency of the 3 concavity context to appear
inside detected CCWs. Row 5: Average CCW size (% of image
width × % of image height). Row 6: chance to appear figural
object within random observation windows. The statistics demon-
strate that 81% (Case 1+3) of the CCWs contain salient (figural)
object, comparing with the chance of 60% on average.

els. The concave arc detection algorithm is then performed
along the contour of each superpixel and we totally obtain
1,218 concave arcs and corresponding CCWs (see Section
3.2 for the concave arc detection algorithm). We manually
classify the detected CCWs into the three concavity context
and obtain the statistical result in Table 1.

Furthermore, for each dataset, we calculate the chance to
appear salient object inside random observation windows.
Such window will count when salient object covers more
than 10% of the window area. Intuitively, this chance is
in direct proportion to the size of the salient object and the
observation window. So for each dataset, we choose the
average CCW size as the random observation window size
for fair comparison.

The statistical result demonstrates that on average 81%
(Case 1+3) of detected CCWs contain salient object, while
about 60% of random observation windows contain salient
object. Hence, it is clear, convexity (concavity) is also valid
under such general condition, and what’s more important,
once we find a CCW, for a large probability it contains
salient object.



(a) (b) (c) (d)

Figure 3. Flowchart of our approach. (a) Input image. (b) Compute hierarchical segmentations and detect concave arcs (CCWs). (c) A
weighted graph is built on the candidate superpixels. Notice not all the edges are drawn in this example. (d) Cluster to obtain final result.

3. Approach
3.1. Overview

We build a hierarchical model to separate salient and
background objects using the concavity context informa-
tion. The framework is also capable of detecting multiple
salient objects. We briefly describe the framework as fol-
lows.

Step 1. Preprocessing. Compute hierarchical segmenta-
tions for the input image. Find all concave arcs and CCWs
on the multiple segmentations and thus form a candidate
superpixel set.

Step 2. Model construction. Build a weighted graph
on the candidate superpixels and calculate the distance be-
tween vertices.

Step 3. Clustering. Bi-partition the graph and ob-
tain single salient object detection result. Recursively
bi-partition the foreground subgraph and obtain multi-
ple/hierarchical salient object detection result.

Figure 3 demonstrates the flowchart of our approach.

3.2. Preprocessing

Hierarchical segmentation. Firstly, we compute n hier-
archical segmentations by varying the number of superpix-
els using Felzenswalb’s [6] segmentation algorithm.

There are several reasons to employ hierarchical seg-
mentation. First, theoretically it accords with the human
visual perception for the multi-scale analysis of objects and
scenes [18]. We use this model to add up concavity context
on different scales in the hierarchy. Second, experimentally,
as one kind of multiple segmentation, it substantially im-
proves spatial support estimation compared to a single seg-
mentation [17, 10, 25]. Finally, superpixels in current layer
can be split into several smaller ones in lower (finer) lay-
ers, thus we are able to approximately measure the distance
between superpixels using the hierarchy (see Figure 4(a)).

Concave arc and CCW detection. Next, we detect all
the concave arcs and CCWs in the hierarchical model. The
reason for not detecting convex ones is that, by observation
we find concave arcs have stronger discriminative power to

(a) (b)
Figure 4. (a) We design a hierarchical model based on the multiple
segmentations. Two neighboring superpixels will be merged in
upper layer if they are similar in color and texture. Suppose n = 3,
ln−2 is the coarsest layer. So original distance between A,B is 1,
between A,C is 2, and between A,D is 2+Ddijkstra(A′, D′) = 3.
(b) For the concave arc etp in lt, t < n, we make a cast to the finest
layer ln. The cast concave arc splits the superpixel set Cast(etp)
into two parts, and they are shown in different colors.

assign figure-ground relations than convex ones. Moreover,
most superpixels are convex at global scale, hence techni-
cally finding concave arc is easier.

Previous works in [4, 23] discuss to detect convex and
concave parts of digital curves. However their algorithms
are sensitive to the selection of starting points, and lack the
information of how ”concave” the curve is. In this paper,
we propose a simple method to find concave parts of digital
curves with deep curvature. The main algorithm is demon-
strated in Figure 5 and described as follows:

1. For a given superpixel, a B-spline curve algorithm is
used to smooth the contour and reduce noise.

2. A minimum enclosing rectangle is drawn for the su-
perpixel and the contour is thus split into four sections.

3. For each section, a main direction is defined (clock-
wise, 8-connected). Given a pixel p on the curve, we con-
sider p+1 the pixel next to p. The direction of p moving to
p + 1 is the direction of p. Hence we scan the pixel move-
ments in sequence, and pixel that moves against correct or-
der for more than th steps are regarded as starting point for



Figure 5. Left: the smoothed superpixel contour is split into four
sections and main directions are defined for each section (blue ar-
rows on the corner, in sequence). Mid: pixels which move against
main direction, is a sign to start a concave arc (red rectangle).
Right: pixels which move in main direction, is a sign to end a
concave arc (blue rectangle). Black arrow: pixel movements indi-
cate start or end of a concave arc, but step length does not reach
threshold th. The curve in red is one detected concave arc.

a concave arc. We use threshold th here to reduce noise and
determine how deep the curvature will be. For example in
Figure 5, the section containing the red curve starts from the
top and ends in the right. Hence the main direction is right,
right-bottom and bottom in sequence. Pixels that move in
other directions, or disobey this order for more than 4 steps,
are considered as beginning of one concave arc.

4. If starting point of a concave arc is detected, we con-
tinue to scan the following pixel movements until we meet
correct directions (main direction 1,2,3, or 2,3 in sequence,
must also last for th steps). Hence a concave arc is found.

5. Finally concave arcs not long enough will be removed
from the result set.

We define L = {l1, l2, . . . , ln} as the set of hierarchi-
cal segmentations. l1 is the coarsest segmentation and ln
the finest. St = {st1, st2, . . . , stmt

} is the set of superpixels
in lt. Et = {et1, et2, . . . , etkt} is the set of concave arcs in
lt, and Wint = {W t

1 ,W
t
2 , . . . ,W

t
kt
} is the corresponding

CCW set. After concave arc and CCW detection in the hier-
archical segmentations, we obtain E = {E1, E2, . . . , En},
and Win = {Win1,Win2, . . . ,Winn}.

Concave arc and CCW cast. For each concave arc and
corresponding CCW detected, we make a pixel-wise cast to
the finest segmentation (see Figure 4(b)). This results in the
summation of concavity context on different scales in the
hierarchical model.

After the cast, concave arcs and CCWs do not change
in position, and the CCWs may cover many smaller super-
pixels. We define these covered superpixels as Cast(etp).
At this time, the cast concave arc separates Cast(etp) into
two parts. We do not care about the order and denote
one part as S+

etp
= {sn1 , sn2 , . . . , snu}, and the other part

as S−etp = {sn1 , sn2 , . . . , snv}. For example in Figure 4(b),

Cast(etp) = {A,B,C,D,E}, S+
etp

= {A,B,C}, and

S−etp
= {D,E}.

Selection of candidate superpixels After the above
two steps, we regard the union of all the superpixels in⋃
1≤t≤n,1≤p≤|Et|

Cast(etp) as the candidate superpixel set for

model construction.

3.3. Model Construction

Yu and Shi propose a framework to perform figure-
ground segregation in [30]. In their model, the Ncut cost
function is modified so as to take both bottom-up feature
saliency and top-down object familiarity information into
consideration. Similarly in our approach, the bottom-up cue
of convexity (concavity) is used. But we pay more attention
on the construction of the affinity graph, instead of the mod-
ification of cost functions.

Let G = (V,E) be an undirected weighted graph, in
which V is composed by the candidate superpixels. We de-
fine the affinity between superpixel sni and snj as:

W (sni , s
n
j ) = D(sni , s

n
j )× (1 + γ)c

where D(sni , s
n
j ) is the original distance encoding the fea-

ture and spatial distance simultaneously between superpixel
sni and snj . As discussed in Section 3.2, if two neighboring
superpixels appear to be similar in color and texture, they
will probably be merged in a coarser layer. We can measure
distance between them by finding their least common an-
cestor (LCA) in the hierarchy. The step length to their LCA
is the approximate original distance. Meanwhile, if two su-
perpixels do not have LCA, the original distance then equals
to the summation of n− 1 and the Dijkstra distance of their
cast superpixels on the coarsest layer. n is the total number
of layers in the multiple segmentations. Figure 4(a) shows
an example to calculate the original distance D.

The term (1+ γ)c encodes the distance adjustment from
detected concave arcs. Generally, the aim of distance ad-
justment is that, superpixels on the same side of the concave
arc should be grouped together, and superpixels on different
sides of the concave arc should be separated. Thus for each
detected concave arc etp, the strategy is:

For each pair in {(sni , snj )|sni ∈ S+
etp
, snj ∈

S−etp
, (sni , s

n
j ) ∈ S+

etp
× S−etp

}, we multiply W (sni , s
n
j ) by

(1 + γ). So that c => c+ 1;
For each pair in {(sni , snj )|sni , snj ∈ S+

etp
, (sni , s

n
j ) ∈

S+
etp
×S+

etp
∨sni , snj ∈ S

−
etp
, (sni , s

n
j ) ∈ S

−
etp
×S−etp}, we divide

W (sni , s
n
j ) by (1 + γ). So that c => c− 1.

For example in Figure 4(b), the distance adjustment
on etp implies that we make superpixels within S+

etp
=

{A,B,C} closer to each other, superpixels within S−etp =

{D,E} closer to each other, and superpixels between S+
etp

and S−etp further apart from each other.



Figure 6. Left: suppose the ellipse (C,D) in the middle is the figu-
ral object, and three concave arcs and CCWs are detected. Right:
”+” (resp. ”-”) indicates that superpixels on the two sides of that
curve are made further apart (resp. closer) from each other. The
numbers aside correspond to the CCWs in the left image. Because
of the closure of objects, distance adjustments inside the same ob-
ject seldom has effect on the distance between different objects. It
is clear in this image, the figural object (C,D) can be well grouped
together and separated from the background.

Putting everything together, for the calculation of
W (sni , s

n
j ), we first let c = 0 and compute the original dis-

tance D(sni , s
n
j ). Then we find all the CCWs in the hier-

archical segmentations which cover these two superpixels
after the cast to ln. Next we update c using the distance ad-
justment method stated above for each CCW found. Finally
we obtain the c value and W (sni , s

n
j ).

The reason for distance adjustment is that, from the sta-
tistical result in Table 1, we can see 59% (F-G) of the con-
cave arcs are located at border of salient objects. Hence,
(i) over half of all the adjustments (F-G) will be made to
enlarge the distance between salient and background ob-
jects; (ii) for the rest part of distance adjustments within
the same objects (F-F, G-G), they seldom have effect on the
distance between salient and background objects because
of the closure of objects. This is illustrated in Figure 6. Fi-
nally, after summation of all concavity context and distance
adjustments on different scales in the hierarchical model,
salient and background objects can be largely separated us-
ing graph-cut algorithms.

3.4. Clustering

Once the graph model is built, we perform a normalized
graph-cut algorithm [26] to regroup the candidate superpix-
els into salient and background objects.

Single salient object detection. For this task, the clus-
tering of salient and background objects is a binary prob-
lem. After bipartition of the graph, we judge which part is
salient object by estimating the relation of surroundedness
between the two parts, because surroundedness is also a ge-
ometric cue indicating that the region surrounded by other
regions tend to be figural [18].

Multiple salient object detection. Previous work in
[15] discusses the multiple salient object detection. They re-
gard this task as a hierarchical object detection and provide
a simple method to detect multiple objects that are disjoint

from each other. However there’s no such restriction in our
framework. We can perform hierarchical/multiple object
detection simply by recursively partitioning the foreground
subgraph, because the distance adjustment on F-F concav-
ity context separates different objects or parts, which acts
in the same way like the figure/ground separation. In Fig-
ure 12, we show some good results of our multiple salient
object detection method.

Notice that, for a fully unsupervised algorithm, the num-
ber of objects/parts should be automatically determined. In
the algorithm of normalized cut, the variable Ncut is the
cut cost as a fraction of the total edge connections to all the
nodes in the graph [26]. We simply use this variable to es-
timate the number of objects/parts by setting threshold of
Ncut.

4. Experiments

4.1. Single Salient Object Detection

MSRA SOD dataset (image set A) [15] is a high quality
image database for the evaluation of salient object detection
algorithms. This dataset contains 5,000 carefully labeled
images by multiple users with high labeling consistency.
However the ground truth of MSRA SOD is in bounding-
box style. Recently in the literature Anchanta et al. [2] fur-
ther provide the image annotations in object-contour style
for a subset of 1,000 images in this dataset. Hence, in our
experiments, we evaluate our proposed method using this
subset of images.

We follow the scheme of precision, recall and F-Measure
to evaluate the accuracy of our method.

4.1.1 Parameter Estimation

Two important parameters in our framework are n and γ. n
is the number of layers in the multiple segmentations, and
γ is the coefficient in the distance measurement between
superpixels, which implies how much the distance will be
adjusted for a detected concave arc. Figure 7 shows the F-
measure results using different values of n and γ. The ex-
periment is running on 100 randomly selected images. We
set β2 = 1 to weigh precision and recall the same.

According to the result, it is clear that when n = 7 and
γ = 0.05, Fβ2=1 is the highest. Hence in the evaluations
below, we choose n = 7 and γ = 0.05.

Moreover, the increase of n significantly improves our
detection accuracy, which experimentally proves the study
in [17]. Notice when γ = 0, no distance adjustment is
made. Under this circumstance, performance drop down
significantly. This means the distance adjustment plays an
important role in the clustering procedure.



Figure 7. Distribution of Fβ2=1 under different n and γ. When
n = 7, γ = 0.05, Fβ2=1 is the highest.

4.1.2 Quantitative and Qualitative Evaluation

We compare our method with some state-of-the-art feature-
based saliency detection algorithms. They are IT [12], MZ
[16], GB [9], SR [11], AC [1], IG [2]. We choose β2 = 0.3
to follow the experimental settings of the baselines. Figure
8 shows the comparison. Our method achieves comparable
performance with the leading method [2], which shows that
concavity context is effective, and our hierarchical model is
suitable for the task of salient object detection.

Figure 8. Precision-Recall bars for the evaluation on the dataset
and groundtruth in [2]. The baseline data is also reported in [2].
β2 is chosen for 0.3.

Furthermore, for the qualitative evaluation, we compare
our method with [2] and show some single salient object
detection results in Figure 9. Generally speaking, our ap-
proach provides reasonable results. For the example of the
flower in group 1 and the sign boards in group 2, the base-
line method finds the part with high contrast, but fails to
detect low-contrast salient regions. Our method is basi-
cally different from feature-based algorithms and such low-
contrast salient regions are successfully obtained.

However for some concave parts of object like the frog
in group 2 and the horses in group 3, distance adjustment
from concavity context are not powerful enough to make the
whole foreground object separable, and our method some-
how fails in these images. Meanwhile, the result of our al-
gorithm to some extent depends on the segmentation and

clustering algorithms. Figure 10 and 11 illustrate some fail-
ure examples of these kinds.

4.2. Multiple Salient Object Detection

Most state-of-the-art salient object detection algorithms
provide binary results, which is to say, they regard all the
detected regions as one object. However our method is ca-
pable of finding multiple salient objects or parts simultane-
ously by continuously partitioning the foreground subgraph.
Based on our study, there is no suitable database and method
to evaluate the multiple salient object detection. Hence we
only show some results in Figure 12.

4.3. Discussion

Computation Efficiency. In our approach, we do not
need to extract low-level image features, and all the compu-
tations are done in O(n) time, including the Ncut algorithm
[26], hence our method is efficient.

Future Work. Exploiting mid-level perceptual cues in
variant computer vision tasks is always an intriguing direc-
tion of work. Ren et al. [21] propose to integrate different
FGO cues to assign figure/ground labels for object contours
using a conditional random field model. Sundberg et al.
[27] further utilize some mid-level cues from optical flow
to estimate figure/ground relations. In the future, we plan to
further study the perceptual cues in the task of FGO.

Moreover, there are many other promising applications
of mid-level perceptual cues besides FGO, such as depth
estimation [3], edge detection [20], part detection for ob-
ject parsing and recognition [18], etc. In our future work,
we also plan to make use of such mid-level cues in other
challenging applications.

5. Conclusion

In this paper, we formulate salient object detection as a
figure-ground organization (FGO) problem. We utilize the
the cue of convexity (concavity) and design a hierarchical
model to add up concavity context on different scales in the
hierarchy. A normalized graph-cut algorithm is finally used
to segregate foreground salient objects. Experiments show
that this spatial context is effective in the task of salient ob-
ject detection compared with other state-of-the-art feature-
based algorithms.
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Figure 9. Examples of single salient object detection results. For each group, the first row is input images. The second row is our detection
results. The third row is results from [2]. In our results, the blue part is salient object and yellow part represents background objects.

Figure 10. Failure examples caused by pool segmentation results (middle). In these examples the background objects contain too much
concavity information and few concave arcs belong to salient objects are detected.



Figure 11. Some other failure examples caused by the Ncut algorithm and hierarchical part of salient objects.

Figure 12. Some successful results for multiple/hierarchical salient object detection.
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