
Optimizing Machine Learning Inference Queries with Correlative
Proxy Models

Zhihui Yang
∗

Zhejiang Lab, Hangzhou, China

zhyang14@zhejianglab.com

Zuozhi Wang

UC Irvine, CA, USA

zuozhiw@ics.uci.edu

Yicong Huang

UC Irvine, CA, USA

yicongh1@ics.uci.edu

Yao Lu

Microsoft Research, WA, USA

luyao@microsoft.com

Chen Li

UC Irvine, CA, USA

chenli@ics.uci.edu

X. Sean Wang

Fudan University, Shanghai, China

xywangcs@fudan.edu.cn

ABSTRACT
We consider accelerating machine learning (ML) inference queries

on unstructured datasets. Expensive operators such as feature

extractors and classifiers are deployed as user-defined functions

(UDFs), which are not penetrable with classic query optimiza-

tion techniques such as predicate push-down. Recent optimization

schemes (e.g., Probabilistic Predicates or PP) assume independence

among the query predicates, build a proxy model for each predicate

offline, and rewrite a new query by injecting these cheap proxy

models in the front of the expensive ML UDFs. In such a manner,

unlikely inputs that do not satisfy query predicates are filtered early

to bypass the ML UDFs. We show that enforcing the independence

assumption in this context may result in sub-optimal plans. In this

paper, we propose CORE, a query optimizer that better exploits the

predicate correlations and accelerates ML inference queries. Our so-

lution builds the proxy models online for a new query and leverages

a branch-and-bound search process to reduce the building costs.

Results on three real-world text, image and video datasets show

that CORE improves the query throughput by up to 63% compared

to PP and up to 80% compared to running the queries as it is.

PVLDB Reference Format:
Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean

Wang. Optimizing Machine Learning Inference Queries with Correlative

Proxy Models. PVLDB, 15(10): XXX-XXX, 2022.

doi:XX.XX/XXX.XX

1 INTRODUCTION
Modern DBMS systems apply machine learning (ML) inference

as user-defined functions (UDFs) for complex analytics over un-

structured texts, images, and videos [3, 11, 22, 24]. Example models

include those extracting user sentiments from product reviews

for market analysis [39] and those estimating vehicle counts from

surveillance videos for traffic planning [13]. Consider the following

query, where input tweets are processed by two ML UDFs, namely

a geographic tagger (F1) and a sentiment analyzer (F2), to generate

∗
Part of the work was done at Fudan University and during a visit to UC Irvine.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 10 ISSN 2150-8097.

doi:XX.XX/XXX.XX

Input
ℱ!:

Geotagger
ℱ":

Sentiment Output
𝜎!:

state=‘CA’
𝜎":

sentiment
=positive

Input ℱ! Output𝜎! 𝜎"
𝜎$!:

state=‘CA’
𝜎$":

sentiment
= positive

proxy model proxy model

ℱ"

(a)

(b)

Figure 1: (a) An example query plan for tweet analysis. (b) An opti-
mized query plan with proxy models.

the predicate columns. These queries enable downstream visualiza-

tion and statistics, such as word cloud that shows most frequent

tokens, and users can accept approximate but fast results.

SELECT F1(t) AS state, F2(t) AS sentiment
FROM Tweets AS t
WHERE state = ‘CA’ ∧ sentiment = positive;

Figure 1(a) demonstrates the plan of the above query, where

𝜎1 and 𝜎2 are the predicates state = ‘CA’ and sentiment =
positive, respectively. ML queries are costly due to the expensive

ML UDFs; improving the efficiency for ML inference has been a

recent research focus [3, 11, 17, 21, 30] to provide an additional

trade-off between accuracy and efficiency [9, 17, 30]. In our ex-

ample, classic query optimization techniques such as predicate

push-down cannot help much because 𝜎1 and 𝜎2 are stuck behind

their corresponding ML UDFs regardless of their selectivity.

To optimize such ML inference queries, recent works [17, 30]

propose to rewrite the query and insert a set of light-weight filters

in front of the expensive ML UDFs, thus forming a proxy model [38].
Figure 1(b) demonstrates an example plan with two proxy models

�̂�1 and �̂�2; they quickly discard input records that are unlikely to

satisfy the predicates and thus improve the query performance.

In [30], a proxy model (i.e., “Probabilistic Predicate” or “PP”) is

specific to a predicate c𝜙v, where c is a predicate column, 𝜙 is a

comparison (e.g., > or =), and v is a constant value. An indepen-

dence assumption is made to train filters among different predicates

directly using the raw input, regardless of the fact that each may

have a different input relation. When ad-hoc queries with multiple

predicates arrive, a query optimizer (QO) rewrites and accelerates

the query by assembling individual filters and using them also in

an independent manner. In many applications, query predicates are

often correlated. In our example, sentiments may vary in different

states – the sentiment in California can be different from that in

Texas. As Section 2.2 will show, the QO in [30] overestimates the

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

reduction when building the filters on the raw input and thus yields

sub-optimal plans for a new query with correlated predicates.

Inspired by [17, 30] to optimizeML inference using proxymodels,

we intend to relax the independence assumption among different

predicates. A proxy model hence is specific not only to a predicate

but also to its input relation, i.e., prefix 𝜎’s and �̂�’s, as well as pa-

rameter choices of prefix �̂� ’s. In Figure 1(b), �̂�2 learns upon filtering

the raw input by �̂�1∧𝜎1

1
. Unlike [30] that builds a small number of

independent filters, it is easy to see that relaxing the independence

assumption may result in an untenable number of filters to build

by enumerating their order and parameter choices.

We propose an optimizer called “CORE” that better exploits pred-

icate correlations in ML inference. Given an ad-hoc query, CORE

builds the proxy models online to avoid exhaustive offline filter con-

struction. We describe a novel technique to accelerate such process

at a small overhead (e.g., a few percent of the query processing) and

a user-specified accuracy target. Extensive experiments for queries

over datasets of tweets, images, and videos indicate that CORE

improves the ML inference execution costs by up to 63% compared

to [30] and up to 80% compared to running the workload as it is.

Various downstream applications, such as interactive data explo-

ration, can benefit from CORE due to a better resource utilization

and a faster decision making.

To summarize, our key contributions are as follows:

• We show that correlations in predicates may harm the

performance of a prior optimization scheme for ML in-

ference [30].

• We propose CORE to accelerate ML inference and relax the

independence assumption enforced by prior work. Our QO

scheme prunes the space of candidate filters to build and

incurs only a small computing overhead.

• Experiments on real-world ML-inference workloads and

datasets show that CORE can achieve significant query-

throughput improvements.

1.1 Related Work
Operator reordering in database optimization. [6, 10] studied
the problem of reordering select-project-join operators in data-

base systems. [2] studied how to order correlated predicates in

streaming systems. It used a greedy algorithm for selection order-

ing and collected samples at runtime to estimate selectivity. Our

query optimization algorithm gives an optimal solution and uses

a branch-and-bound search to quickly prune plans in the space of

proxy models. [34] studied various optimization techniques of com-

plex user-defined functions on map-reduce-style big data systems,

such as predicate simplification and UDF semantic inference. These

techniques were orthogonal to our solution. Sampling-based ap-

proximate query processing techniques [5] provided approximate

answers to queries by running queries on a small sampling subset

of data. Our approach provides approximate answers by exploiting

the accuracy of ML inference predicates.

Proxy models (a.k.a. cascaded filters) in machine learning.
One of the first proxy models [38] cascaded a sequence of light-

weight classifiers to discard background regions of an image to

accelerate object detection. Later, proxy models were studied to

1F1 is a row processor and does not filter as 𝜎1 and �̂�1 do.

improve the performance of classification [32], detection [4, 26],

semantic image segmentation [27], and pose estimation [36]. Differ-

ent from [4, 26, 27, 38] that used a cascade of classifiers to quickly

reject sub-regions of an image, our CORE uses proxy models to re-

duce the size of records to be processed by ML UDFs. Unlike [32, 36]

that integrated proxy models into DNN models to improve the per-

formance during the training phase, our CORE uses proxy models

as separate operators to accelerate ML inference.

Proxy models in databases. Recently proxy models have been ap-

plied in big-data systems to accelerate ML inference-based analysis

tasks [12, 16–19, 23, 30, 40]. NoScope [17] firstly cascaded a cheap

specialized model before expensive DNNs to accelerate selection

video queries. After it, certain classes of video queries including

selection without guarantees [12], selection with statistical guar-

antees [18], aggregation [16] and limit queries [16] was optimized

using proxy models. A general index solution in [19] was proposed

to accelerate these video queries over the schema induced by the

target DNN. Probabilistic predicates (PP’s) [30] optimized various

domain queries by inserting multiple offline-built proxy models

before expensive ML UDFs with an assumption of independence

between predicates. Different from [12, 16–18, 23, 40], PP and our

proposed CORE cascade general proxy models, which are applica-

ble to a variety of domains. CORE follows this line of work and

further relaxes the independence assumption of the predicates.

2 PROXY MODELS
We briefly review the background of proxy models and then study

the impact of correlations to proxy models.

2.1 Background
Proxy models have been studied for decades to accelerate ML

inference. Jones et al. [38] cascade weak classifiers as proxy models

to speed-up face detection in images. Recently, techniques of using

cheaper but less accurate ML models to accelerate ML models in [4,

26, 27, 32, 36, 38] attracted attention in big data systems. We briefly

review two related solutions [17, 30] and refer the readers to their

papers for more details.

NoScope (NS) [17] aims to process video queries such as “finding

video frames with vehicles” and “finding video frames with pedes-

trians” using an object-detector UDF. It builds and applies a proxy

model, i.e., a cheaper object detector using shallowNeural Networks

(NNs), which has the same semantics as the object-detector UDF.

NoScope has to train for each query predicate and thus has large

building costs when the query predicates are ad-hoc or complex.

Probabilistic Predicate (PP) [30], as mentioned earlier, is another

form of proxy models. Each PP is a cheap classifier to predict the

likelihood of an input record matching a predicate clause. Easy

inputs with a small likelihood will be discarded immediately, while

hard inputs will be processed further by subsequent ML UDFs.

For ad-hoc queries with complex predicates, a query optimizer as-

sembles multiple PPs built offline, and a dynamic programming

algorithm is leveraged to achieve a maximum reduction, under

the independence assumption in queries. However, this assump-

tion made in PP limits its use to broader applications. Dependency
between columns is the rule, rather than the exception, in the real

world [14]. In the following, we conduct a controlled experiment

to study the impact of correlations to proxy models.

2.2 Impact of Correlations
To better understand the impact of correlations in processing ML

inference queries, we leverage the correlation score provided by

CORDS [14]. Specifically, let 𝑑1 and 𝑑2 be the distinct counts in a

pair of columns. The correlation score is computed by a chi-squared

test upon a sample of 𝑛-rows:

�̂�2 =
1

𝑛(min(𝑑1, 𝑑2) − 1)

𝑑1∑︁
𝑖=1

𝑑2∑︁
𝑗=1

(𝑛𝑖 𝑗 − 𝑛𝑖 ·𝑛 · 𝑗)2

𝑛𝑖 ·𝑛 · 𝑗
,

where 𝑛𝑖 𝑗 is the frequency of distinct tuple 𝑖, 𝑗 , and 𝑛𝑖 · , 𝑛 · 𝑗 are the
marginal frequency. A larger �̂�2

value indicates a stronger correla-

tion between the columns. For example, we can follow CORDS to

use a sample of 10K rows and normalize the correlations scores by

the maximum number in all the predicate pairs. All other algorith-

mic details follow the CORDS paper [14].

Why correlationmatters for PP?We explain the reason using the

Twitter dataset and two queries, 𝑞 and 𝑞′, each with two predicates

of different kinds of correlation. We illustrate these two queries in

Appendix A.1 in the technical report [42].The correlation between

the 𝑞 predicates is stronger (2.5 ×) than that of the 𝑞′ predicates.
The PP filters are trained offline for each predicate without consid-

ering the context in which the predicate is applied. We collect the

estimated accuracy-reduction curves for the second PP in 𝑞 and 𝑞′

during the training phase and illustrate them in Figures 2a and 2b,

respectively. Two proxy models �̂�1 and �̂�2 are connected for the

predicate 𝜎1 ∧ 𝜎2.

90 92 94 96 98 100
Accuracy (%)

0
10
20
30
40
50

Re
du

cti
on

 (%
)

Estimated
Empirical

(a) Strongly correlated query 𝑞.

90 92 94 96 98 100
Accuracy (%)

0
2
4
6
8

10
12

Re
du

cti
on

 (%
)

Estimated
Empirical

(b) Weakly correlated query 𝑞′.

Figure 2: The estimated and empirical accuracy-reduction curves of
the second PP filters in a strongly correlated query 𝑞 and a weakly
correlated query 𝑞′. Correlation results in overestimated reductions
offline in PP.

When𝜎1 and𝜎2 are correlated and �̂�1 discards a row thatmatches

𝜎1, the discarded row is also likely to match 𝜎2 because of the cor-

relation. In general, the empirical reduction produced by �̂�2 is less

than the estimated reduction as shown in Figure 2, because there are

fewer input rows for 𝜎2 after �̂�1. When there is a strong correlation,

the reductions can be overestimated. For example, as shown by 𝑞

with a strong correlation in Figure 2a, when the accuracy is 95%,

the estimated data reduction is 40%, and the empirical value is 15%.

At the same accuracy, the difference of the reduction ratio for 𝑞′ in
Figure 2b with a weak correlation is at most 2%. As a result, with

strong correlations, PP unnecessarily routes more inputs to the

expensive ML UDFs and thus yields a lower performance speedup.

This example shows that the optimizer in previous work overesti-

mates the reduction of the proxy models built offline, thus yielding

suboptimal query plans and less performance improvement for a

new query with correlated predicates; this limits the use of PPs to
broader applications.

3 CORE OVERVIEW
In this section we give an overview of CORE and formally define

its optimization problem.

3.1 System Architecture
In Figure 3, the input of CORE is a query that includes multiple ML

inference UDFs. These UDFs, as seen in the previous section, depict

row manipulators; they produce one output row per input row. ML

UDFs wrap operations such as feature extraction or classification.

CORE optimizes the input query by building proxy models online

and generates a more efficient plan 𝑞∗. We build proxy models for

predicates of the form c𝜙v. Meanwhile, a query can have one or

more predicate clauses in conjunction:

∧
c𝜙v. A small portion of

the input data (e.g., 𝑘%) is used to build proxy models, and the

remaining data is processed by the optimized plan 𝑞∗. We follow

the scope of previous papers such as NoScope [17] and PP [30] to

focus on approximate selection queries.

ℱ! → 𝜎! → ℱ" → 𝜎" CORE
Input query plan 𝑞

𝜎%" → ℱ" → 𝜎" → 𝜎%! → ℱ! → 𝜎!

Modified query plan 𝑞∗
Input data𝑘% 1 − 𝑘%

Output data

Figure 3: Given a query plan 𝑞, CORE generates an optimized plan
𝑞∗ by applying proxy models. Part of the input data (𝑘%) is used for
building proxy models, and the remaining data is processed by 𝑞∗.

Definition 1. A proxy model �̂� is characterized by a tuple

{𝑑, 𝜎,𝑀, 𝐿, 𝑅},
where 𝑑 is an input relation (i.e., applying a sequence of prefix

filters on the raw input), and 𝜎 is a target predicate that �̂� aims to

improve;𝑀 is a regression model used by �̂� to produce a scoring

function for each input record; 𝐿 is a labeled sample from the input

relation 𝑑 to build𝑀 ; and 𝑅 is a mapping from an accuracy 𝛼 to a

reduction 𝑟 . For the example in Figure 1(b), �̂�1 is built for the input

relation 𝑑1 = ∅ (raw input) and the predicate 𝜎1 : state=‘CA’,
while �̂�2 is built for 𝑑2 = (�̂�1, 𝜎1) and 𝜎2 : sentiment=positive.
The mapping 𝑅 will be explained shortly.

Building proxy models online consists of collecting 𝐿 and then

training 𝑀 . We leverage the initial stream of the input data for 𝐿

(e.g., a few thousand rows). The labeled sample 𝐿 is obtained by

applying the filters specified in 𝑑 upon the raw input and then

labeling by predicate 𝜎 . The label is +1 if 𝜎 is satisfied, and -1

otherwise. Next, we use light-weight regression models such as

linear SVMs [15] or shallow NNs [25] to train𝑀 .

Given an input record x, a proxymodel predicts a score𝑀 (x). For
example, for linear SVM,𝑀 (x) = w𝑇 x + 𝑏, where w is a weighted

M(𝑥) →

0

1

𝜃 = 0.3

5/18=28%

10/10=100%
8/18=44%

9/10=90%

𝜃 = 0.4

Accuracy 𝛼 Reduction 𝑟

+1-1

Figure 4: Relationship between an accuracy 𝛼 and a reduction ratio 𝑟
in a proxymodel. Records are ranked in ascending order according to
their𝑀 (𝑥) scores along the 𝑥-axis. White and dark circles represent
records with -1 and +1 labels, respectively.

matrix and 𝑏 is a bias term. Record x will be discarded if𝑀 (x) < 𝜃

(for a threshold 𝜃), and in this case the record is called a negative ex-
ample. As in [30], the accuracy is the percentage of positive records

being passed by a proxy model relative to all positive records. The

data reduction is the percentage of records being discarded relative

to all input records. In Figure 4, setting 𝜃 = 0.3 results in all positive

records being passed (i.e., the accuracy is 100%), and 5 out of 18

total records being discarded (i.e., the reduction is 28%). Setting

𝜃 = 0.4 results in 9 records of 10 total positive records being passed

(i.e., the accuracy is 90%), and 8 out of 18 records being discarded

(i.e., the reduction is 44%). It is clear that a higher 𝜃 yields a lower

accuracy and a higher data reduction. Such early filtering is a trade-

off between accuracy and data reduction. Note that the mapping

between 𝛼 and 𝑟 given 𝜃 can be evaluated using a validation set.

In the rest of the paper we denote such a relationship as 𝑅. We

can compute it by evaluating �̂� on a validation set from the initial

stream of the input records.

Then, our developed query optimizer injects �̂� into the query

plan right before the corresponding ML UDF that generates the 𝜎

predicate column (Figure 1(b)) for the remaining input records.

Query optimization by applying proxy models. We borrow

the AQP-style query interface in [30]. Specifically, the user issues a

query and specifies a global target accuracy A that depicts the level

of false negatives of the proxy models in addition to those caused

by the UDF. Note that the UDFs themselves produce false positives

and negatives and we do not intend to break the black boxes to

improve their accuracy and performance. A is the percentage of

the output of an original query 𝑞 kept by its optimized query 𝑞∗

(Figure 3). It is a value between 0 and 1. It sets the trade-off goals

between additional errors and query-processing speedups. Our QO

builds the proxy models, considers their combinations, allocates

their accuracy parameters, and injects them into the modified query

plan 𝑞∗. To reduce the computing overhead and latency of building

the proxy models before the input query can be accelerated, the

QO reuses intermediate results during the filter construction and

prunes candidate plans using a branch-and-bound search.

3.2 Formulation of Optimization Problem
Given anML query 𝑞 with UDFsF1, . . . ,F𝑛 , predicate filters 𝜎1, . . . ,

𝜎𝑛 , and a query-level target accuracy A, we aim to build proxy

models �̂�1, . . . , �̂�𝑛 with their accuracy parameters 𝛼1, . . . , 𝛼𝑛 so that

A is met. Let the execution costs of applying �̂�𝑖 and the ML UDF

F𝑖 be 𝑐𝑖 and 𝑐𝑖 , respectively. For a pair of a proxy model �̂�𝑖 and

its corresponding ML UDF F𝑖 (i.e., �̂�𝑖 ∧F𝑖), its input cardinality is

Notation Meaning

𝜎 A filter predicate after an ML UDF.

�̂� A cheap proxy model that has the same semantics as 𝜎 .

𝑑 The input relation of a proxy model �̂� .

𝐿,𝑀 , 𝑅 The labeled sample, trained classifier, and accuracy-reduction curve

for a proxy model, respectively.

𝛼, 𝑟 A proxy model’s accuracy and the achieved reduction ratio.

𝑞,A A query and a query-level target accuracy specified by a user.

𝑠𝑖 The selectivity of 𝜎𝑖 on the condition of prefix �̂�1, . . . , �̂�𝑖−1 and 𝜎1,

. . . , 𝜎𝑖−1 , i.e., 𝜎𝑖 | (�̂�1, . . . , �̂�𝑖−1, 𝜎1, . . . , 𝜎𝑖−1) .
𝑐𝑖 , 𝑐 The execution cost for �̂� and an ML UDF F.

𝜋 An order of proxy models.

𝐶𝑙
𝑖
,𝐶𝑢

𝑖
Lower and upper bounds of execution cost for a pair (�̂�𝑖 , F𝑖).

Table 1: Notations used in this paper.∏𝑖−1

𝑗=1
𝑠 𝑗 · 𝛼 𝑗 . The execution cost of the pair is

𝐶 (�̂�𝑖 , 𝛼𝑖) = (
𝑖−1∏
𝑗=1

𝑠 𝑗 · 𝛼 𝑗) · (𝑐𝑖 + (1 − 𝑟𝑖) · 𝑐𝑖), (3.1)

where 𝛼𝑖 is the accuracy of �̂�𝑖 , 𝑟𝑖 is the reduction of �̂�𝑖 , and 𝑠𝑖 is the

conditional selectivity of predicate 𝜎𝑖 with prior filters �̂�1, . . . , �̂�𝑖−1,

𝜎1, . . . , 𝜎𝑖−1.

In an original query 𝑞, let 𝑠𝑖 be the conditional selectivity of 𝜎𝑖
with prior 𝜎1, . . . , 𝜎𝑖−1. In an optimized query 𝑞∗, let 𝑠𝑖 be the con-
ditional selectivity of �̂�𝑖 ∧ 𝜎𝑖 with prior �̂�1, . . . , �̂�𝑖−1, 𝜎1, . . . , 𝜎𝑖−1.

According to the accuracy definition in [30], the accuracy of �̂�𝑖 can

be computed as:

𝛼𝑖 = 𝑠𝑖/𝑠𝑖 , (3.2)

which is the percentage of the output by 𝜎𝑖 kept by �̂�𝑖 ∧ 𝜎𝑖 . The
output selectivity of the original query 𝑞 is

∏𝑛
𝑖=1

𝑠𝑖 , and the output

selectivity of an optimized plan 𝑞∗ is
∏𝑛

𝑖=1
𝑠𝑖 . The query accuracyA

can be computed as A=
∏𝑛

𝑖=1
(𝑠𝑖/𝑠𝑖). When building proxy models,

their accuracy parameters and A satisfy∏
𝑖

𝛼𝑖 · 𝛿𝑖 = A,

where 𝛿𝑖 = 𝑠𝑖/𝑠𝑖 . 𝛿𝑖 is at most 1/(∏𝑖−1

𝑗=1
(𝛼 𝑗 · 𝛿 𝑗)) and its value is

always smaller than 1/A. The detailed derivation of a lower bound

and an upper bound of 𝛿𝑖 is in Appendix A.2 in [42]. For simplicity,

we use 𝛼𝑖 to refer 𝛼𝑖 · 𝛿𝑖 in the following sections.

Example. We demonstrate the number of passing records by each

filter for the example query in Figure 5. In Figure 5(a), 𝛿2 = 𝑠2/𝑠2,

where 𝑠2 = 60/100 is the conditional selectivity of the predicate

sentiment=positive with a prior conditional predicate state=
“CA" (i.e., 𝜎1); 𝑠2 = 56/96 is the conditional selectivity of the same

predicate with a prior condition �̂�1 ∧ 𝜎1 in Figure 5(b). Hence, 𝛿2 =

𝑠2/𝑠2 = (56/96)/(60/100) = 0.972, which measures the changes of

the input of 𝜎2 after adding its prefix proxy model �̂�1. This proxy

model changes the input data size of 𝜎2 from 100 to 96 because �̂�1

discards 4 tweets satisfying state=“CA". Similarly, 𝛿1 = 𝑠1/𝑠1 =

(100/200)/(100/200) = 1, since 𝜎1 is the first filter and there is no

prefix proxy model changing the input of 𝜎1.

To this end, the target accuracy A is calculated as A= 54/60 =

0.9, which is the percentage of the output of the original query in

Figure 5(a) (i.e., 60 tweets) kept by its optimized plan in Figure 5(c)

(i.e., 54 tweets). For each proxy model �̂�𝑖 , 𝛼𝑖 is the percentage of

the output by 𝜎𝑖 kept by �̂�𝑖 ∧ 𝜎𝑖 . In Figure 5(b), 𝛼1 = 96/100 = 0.96,

as �̂�1 ∧ 𝜎1 keeps 96 tweets in Figure 5(b) and 𝜎1 keeps 100 tweets

in Figure 5(a). Similarly, 𝛼2 = 54/56 = 0.964. As mentioned before,

Selectivity (�̅�!) = 100/200 Selectivity (�̅�") = 60/100

Input
ℱ!:

Geotagger
ℱ":

Sentiment
𝜎!:

state=‘CA’ Output
𝜎":

sentiment
=positive

60200 100

Selectivity (𝑠") = 56/96

Input
ℱ!:

Geotagger
ℱ":	

Sentiment Output
𝜎!:

state=‘CA’
𝜎":

sentiment
= positive

𝜎%!:
state=‘CA’

56200 120 96

Accuracy (𝛼!) = 96/100Reduction (𝑟!) = (200 − 120)/200

Input
ℱ!:

Geotagger
ℱ":

Sentiment Output
𝜎!:

state=‘CA’
𝜎":

sentiment
= positive

𝜎%!:
state=‘CA’

𝜎%":
sentiment
= positive

54200 120

Reduction (𝑟") = (96−66)/96

96 66

Accuracy (𝛼") = 54/56

(a)

(b)

(c)

Figure 5: Step-by-step demonstration of inserting two proxy models to optimize a query. (a) An original query plan; (b) A query plan with �̂�1

inserted; (c) A query plan with �̂�1 and �̂�2 inserted. Each edge depicts the number of passing tweets. Selectivity (i.e., 𝑠𝑖 , 𝑠𝑖), reduction (i.e., 𝑟𝑖), and
accuracy (i.e., 𝛼𝑖) values are illustrated. The overall query accuracy is A= 54/60.

𝛿1 = 1 and 𝛿2 = 0.972. Both of them measure the input relation

changes for 𝜎1 and 𝜎2 respectively when applying proxy models.

Finally, we have 𝛼1 · 𝛿1 · 𝛼2 · 𝛿2 = 0.9 = A. In general, relaxing the

independence assumption among predicates results in introducing

a input relation change factor 𝛿 caused by its prefix proxy model.

Problem Statement. Let 𝜋 be an order of the ML UDFs and pred-

icate filters. Let �̂�𝜋𝑖 denote the 𝜋𝑖 -th proxy model. Our QO finds

the following optimal query plan in the order space 𝜋 ∈ H and the

accuracy space A:

arg min

𝜋 ∈H,𝛼 ∈A

∑︁
𝑖

𝐶 (�̂�𝜋𝑖 , 𝛼𝜋𝑖), 𝑠 .𝑡 .
∏
𝑖

𝛼𝜋𝑖 = A. (3.3)

Finding an optimal order 𝜋 of �̂� and allocating their parameter

𝛼 , simultaneously, is NP-hard, as shown in Theorem 1 in [42].Since

both 𝑟 and 𝑠 depend on 𝑑 and the input relation of �̂� (i.e., prefix 𝜎 , �̂� ,

and 𝛼 choices), building �̂� offline by enumerating possible 𝑑 incurs

large computing costs. We seek a solution such that each �̂� is built

on-the-fly on a materialized sample 𝐿 of its input relation 𝑑 . A main

challenge is that, given the accuracy target, how to efficiently build

�̂� with a small computing overhead with taking its input relation

into account. We describe our solution to find an optimal set of

accuracy parameters 𝛼 ∈ A given an order 𝜋 in Section 4, and study

how to find an optimal order 𝜋 ∈ H in Section 5. Both sub-problems

exhibit unique structures that can be leveraged for acceleration.

Table 1 summarizes the notations used in the paper.

4 CORE: ACCURACY ALLOCATION
In this section, we present an efficient algorithm in CORE for de-

riving an optimal accuracy allocation 𝛼𝜋1
, . . . , 𝛼𝜋𝑛 among different

�̂�𝜋𝑖 for a given order 𝜋 to achieve a minimum cost

∑
𝑖 𝐶 (�̂�𝜋𝑖 , 𝛼𝜋𝑖).

4.1 A Basic Approach and its Challenge
One approach to allocating the accuracy is as follows. We first

discretize A with a fixed step size. For each candidate 𝛼𝜋𝑖 satisfying∏
𝑖 𝛼𝜋𝑖 ≥ A, we build a proxy model in the order of 𝜋 . We obtain a

labeled sample given its input relation, train a classifier, and derive

reduction as mentioned in Section 3. After building �̂�𝜋𝑖 , we compute

its cost using Equation 3.1, and find an optimal 𝛼 for a minimal

cost. A main challenge is that building proxy models online is time-

consuming for two reasons. (i) There are an exponential number

of candidates �̂�𝜋𝑖 ’s. (ii) For each proxy model, generating a labeled

sample and training a classifier can be computationally costly.

To solve this problem, we present Algorithm 1, which accelerates

the construction given input relations specified in 𝜋 by reusing

previously materialized samples and trained models. Next we will

present the details of the algorithm.

Algorithm 1: Accuracy allocation

1: procedure Accuracy_Allocation(𝜋,A)
2: 𝐿′𝜋0

← raw input;

3: for 𝛼 = ⟨𝛼𝜋1
, . . . , 𝛼𝜋𝑛 ⟩ in discretized A, s.t.

∏
𝑖 𝛼𝜋𝑖 = A:

4: for 𝑖 ∈ {1, . . . , 𝑛}:
5: if 𝐿′𝜋𝑖 is not materialized:

6: 𝐿′𝜋𝑖 ← Apply 𝜎𝜋𝑖 on 𝐿′𝜋𝑖−1

;

7: 𝐿𝜋𝑖 ← Apply �̂�𝜋1
, . . . , �̂�𝜋𝑖−1

on 𝐿′𝜋𝑖 with 𝛼 ;

8: Reuse �̂�∗𝜋𝑖 if 𝜖-approx on 𝐿𝜋𝑖 else retrain;

9: Compute𝐶 (�̂�𝜋𝑖 , 𝛼𝜋𝑖) ;
10: Compute cost

∑
𝑖 𝐶 (�̂�𝜋𝑖 , 𝛼𝜋𝑖) ;

11: Pick 𝛼∗ in A with a minimum cost;

12: Retrain �̂�𝜋1
, . . . , �̂�𝜋𝑛 with 𝛼∗;

13: return �̂�𝜋1
, . . . , �̂�𝜋𝑛 and 𝛼∗𝜋1

, . . . , 𝛼∗𝜋𝑛 .

4.2 Search Framework
As shown in the following example, the objective function (the cost∑
𝑖 𝐶 (�̂�𝜋𝑖 , 𝛼𝜋𝑖) subject to𝛼) is non-convex, whichmeans there could

be multiple locally optimal solutions. In order to find a globally

optimal solution, we use an exhaustive search framework in the

algorithm (lines 3 ∼ 4). If a locally optimal solution is acceptable

by the user, the algorithm can be easily extended to other search

frameworks, such as hill climbing, by replacing lines 3 ∼ 4.

To illustrate that the objective function is non-convex, we con-

struct an examplewith𝑛 = 2. The cost of applying each proxymodel

before its correspondingML UDF could be any non-decreasing func-

tion over its accuracy. This is because the reduction decreases with

the increase of accuracy [30]. Two example costs are the following:

𝐶 (�̂�1, 𝛼1) = 1 − (𝛼1 − 1)2, 𝛼1 ∈ [0, 1] .

𝐶 (�̂�2, 𝛼2) = 𝑒−(2A/𝛼2−1)3 , 𝛼2 ∈ [0, 1] .

Both 𝐶 (�̂�1, 𝛼1) and 𝐶 (�̂�2, 𝛼2) increase monotonically when 𝛼1 ∈
[0, 1] and 𝛼2 ∈ [0, 1]. The cost function 𝑓 =

∑
𝐶 is

𝑒−(2𝑥−1)3 + 1 − (𝑥 − 1)2, 𝑥 ∈ [0, 1] .

If the function 𝑓 is convex on an interval [0, 1], by definition [8],

for any two points 𝑥1 and 𝑥2 in [0, 1] and any 𝜆 where 0 < 𝜆 < 1,

𝑓 (𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓 (𝑥1) + (1 − 𝜆) 𝑓 (𝑥2) .

However, when 𝑥1 = 0.1, 𝑥2 = 0.5 and 𝜆 = 1/2, 𝑓 (𝑥1+𝑥2

2
) =

1.17;
𝑓 (𝑥1)+𝑓 (𝑥2)

2
= 1.12. So 𝑓 does not satisfy 𝑓 (𝜆𝑥1 + (1− 𝜆)𝑥2) ≤

𝜆𝑓 (𝑥1) + (1 − 𝜆) 𝑓 (𝑥2). Thus 𝑓 is not convex.

4.3 Reusing Samples to Reduce Labeling Costs
We first give a theorem about the proxy models, then show how

the algorithm leverages the theorem to reuse samples.

4.3.1 Commutative proxy models. We note that the order of prefix

filters is interchangeable as shown in Theorem 2 in in Appendix

A.4 in the technical report [42]. In Figure 5(b), the 96 output tweets

after �̂�1 ∧ 𝜎1 with 𝛼1 = 0.96 are the same as the output tweets of

applying �̂�1 with 𝛼1 = 0.96 on the 100 output tweets after 𝜎1 in

Figure 5(a). That is, with 𝛼1 = 0.96, applying 𝜎1 ∧ �̂�1 and applying

�̂�1 ∧ 𝜎1 have the same results. To prove the theorem, we introduce

Lemma 1 to prove a base case that a pair of �̂� ∧ 𝜎 are commutative,

and Lemma 4 (in [42]) to prove an inductive case that two pairs of

�̂� ∧𝜎 are still commutative with the same prefix filter and the same

suffix filter, respectively.

Lemma 1. Given a list of records 𝐿, a filter 𝜎 , and a proxy model �̂�
with a parameter 𝛼 , 𝜎 and �̂� with 𝛼 are commutative, i.e., the results
after applying �̂� ∧ 𝜎 are the same as those after applying 𝜎 ∧ �̂� . We
denote �̂� ∧ 𝜎 = 𝜎 ∧ �̂� .

Proof. We first prove that �̂� with a specific 𝛼 parameter is a

selection predicate, and �̂� predicts the same output for a record 𝑥1

independent of different orders of 𝑥1 (𝑥1, 𝑥2 or 𝑥2, 𝑥1) and different

orders of �̂� (�̂�∧𝜎 or 𝜎∧�̂�). According to Definition 1, a proxy model

�̂� is built based on its input relation 𝑑 and a target predicate. After

building �̂� and allocating an accuracy 𝛼 , �̂� is a selection predicate

with fixed values of 𝛼 , 𝑟 , and𝑀 . When applying �̂� , any input record

cannot change �̂� . Consider two records 𝑥1 and 𝑥2, where �̂� passes

𝑥1 and discards 𝑥2. The output of �̂� with different input orders

(𝑥1, 𝑥2 and 𝑥2, 𝑥1) is the same record 𝑥1. For 𝜎 ∧ �̂� , an unseen record

𝑥 for �̂� is the one passed by 𝜎 . If �̂� passes 𝑥 , then 𝑥 is in the output

of 𝜎 ∧ �̂� and also in the output of �̂� ∧ 𝜎 . Otherwise, 𝑥 is not in their

outputs. For �̂� ∧ 𝜎 , �̂� takes more input records, compared to 𝜎 ∧ �̂� .
There is no unseen record for �̂� .

As selection predicates are commutative in general, 𝜎 and �̂� with

𝛼 are commutative. □

4.3.2 Reusing samples. The algorithm improves the performance

by reusing early samples (lines 5 to 7). 𝐿𝜋𝑖 is the sampled input to

build �̂�𝜋𝑖 by applying predicate 𝜎𝜋𝑖 on the input relation 𝑑𝜋𝑖 . In

Figure 5(b), the labeled sample 𝐿2 for �̂�2 has 96 tweets, which are

filtered by �̂�1∧𝜎1 on the raw input and then labeled using the predi-

cate sentiment=positive. It is easy to see that 𝐿𝜋𝑖 changes when
accuracies assigned to its prefix proxy models (i.e., 𝛼𝜋1

, . . . , 𝛼𝜋𝑖−1
)

change. For example, in Figure 5(b), 𝐿2 changes from 97 tweets to

96 tweets when the accuracy parameter of its prefix �̂�1 changes

from 𝛼1 = 0.97 to 𝛼1 = 0.96.

By leveraging Theorem 2, we can improve the performance by

materializing samples 𝐿′ after 𝜎 , and applying �̂� on 𝐿′ during the
search, since common 𝐿′ can be shared for different 𝛼 choices. 𝐿𝜋𝑖
can be obtained by applying �̂�𝜋1

, . . . , �̂�𝜋𝑖−1
on a pre-computed sam-

ple 𝐿′𝜋𝑖 that is computed by applying 𝜎𝜋1
, . . . , 𝜎𝜋𝑖−1

on the raw input.

Lines 5 to 7 illustrate this process of quickly deriving 𝐿 for each 𝛼

search. For the proxy model �̂�2, we materialize its corresponding

sample 𝐿′
2
containing 100 tweets filtered by 𝜎1 in Figure 5(a) to be

reused. When 𝛼1 = 0.97, the labeled sample 𝐿2 can be obtained by

applying prefix �̂�1 with 𝛼1 = 0.97 on the 100 materialized tweets

and producing 97 tweets. Similarly, when 𝛼1 changes to 0.96 in Fig-

ure 5(b), the labeled sample 𝐿2 can be obtained by applying �̂�1 with

𝛼1 = 0.96 on the already materialized sample 𝐿′
2
of 100 tweets and

producing 96 tweets. This solution is simple but effective, since ap-

plying �̂� is cheap and doing so allows us to evaluate each expensive

Fand 𝜎 only once.

4.4 Reusing Classifiers to Reduce Training
Costs

The algorithm adopts a classifier-reusing scheme (line 8) to avoid

repeated training classifiers when the prefix proxy models change

their accuracy assignments. Specifically, let �̂�∗ trained on 𝐿∗ with 𝛼
from a previous iteration (line 3) be 𝜖-approximate [1] to �̂� trained

on 𝐿. That is:

(1 − 𝜖)𝜙∗ (𝐿∗) ≤ 𝜙∗𝐿 ≤ (1 + 𝜖)𝜙∗𝐿∗, (4.1)

where 𝜙 is the objective function of the regressor model used by the

proxy model. 𝜙 can be computed using a scoring function, such as

F1 score or coreset [1]. Take the F1 scoring function as an example.

We efficiently compute 𝜙 by evaluating �̂�∗ from a previous iteration

and measuring its F1 score on its labeled sample 𝐿∗ and current

𝐿 [1]. �̂�∗ can be reused if it is 𝜖-approximate under the current

accuracy setting. In Figure 5(b), suppose we want to build the proxy

model �̂�2 for the predicate sentiment=positive on its 96 labeled

tweets with prefix 𝛼1 = 0.96. If there is a proxy model �̂�∗
2
trained

on 97 tweets with prefix 𝛼1 = 0.97 satisfying Equation 4.1, we reuse

the classifier in �̂�∗
2
(i.e.,𝑀∗

2
) without training a new classifier on the

96 tweets. In Equation 4.1, we compute 𝜙∗ (𝐿∗) by evaluating the

F1 score of𝑀∗
2
on the 97 tweets, while 𝜙∗ (𝐿) is on the 96 tweets.

We next discuss how to compute 𝐶 (�̂�𝑖 , 𝛼𝑖) (line 9). The per-

row cost 𝑐 for �̂� and 𝑐 for Fcan be profiled during training or by

counting the FLOPS of the ML model, while 𝑟 can be obtained from

𝑅, and 𝑠 can bemeasured by applying the prefix filters on a sample of

the raw input. Since applying the proxy models is computationally

cheap,𝐶 can be computed efficiently. In Figure 5, the cost of the ML

UDF Geotagger is 20ms per tweet in our experiments, while that

of the proxy model �̂�1 is 0.01ms per tweet. The proxy model �̂�1 with

𝛼1 = 0.96 pays the cost of processing 200 tweets and saves the cost

of the 80 discarded tweets, which no longer need to be processed by

the ML UDF Geotagger. Therefore, using Equation 3.1, we have

𝐶 (�̂�1, 𝛼1) = 𝑐1 + (1 − 𝑟1) · 𝑐1 = 0.01 + (1 − 80/200) · 20 = 12.01.

5 CORE: REORDERING PROXY MODELS
In this section we study how to reorder proxy models to find an

optimal order 𝜋 ∈ H to minimize the cost

∑
𝐶 . For different or-

ders, proxy models built on input relations and predicates are dif-

ferent and they have different costs. For instance, in Figure 5(c),

for the order state = “CA”∧sentiment = positive, the proxy
model for predicate state = “CA” is built on the original input

data. For the order sentiment = positive∧state = “CA”, the
proxy model for the same predicate is built on records satisfying the

predicate sentiment = positive. Because different orderings af-
fect the input data to the proxy model, these two proxy models

have different execution costs for the same ML UDF Geotagger.
The number of query plans in H is exponential in terms of the

number of UDFs and filters. We construct a search tree to represent

them by merging common prefixes of query plans. For example,

let 𝑋 , 𝑌 , and 𝑍 be three ML UDFs. There are six potential plans

in H (e.g., 𝑋𝑌𝑍 and 𝑋𝑍𝑌). Figure 6 shows a snippet of the search

tree starting from node 𝑋 , where each tree node represents an ML

UDF Fand its corresponding �̂� and 𝜎 . In general, building all proxy

models for the plans can be computationally prohibitive. To find an

optimal order 𝜋 efficiently, we propose a search algorithm based

on branch-and-bound [20, 29] to prune candidate plans.

5.1 Bounded Cost
For a specific order of proxy models, we can compute a lower

bound and an upper bound of the cost

∑
𝐶 . Intuitively, an initial

lower bound corresponds to the case when all proxy models discard

everything. An initial upper bound corresponds to the case when

all proxy models discard nothing. For example, for the order 𝑋𝑌𝑍

in Figure 6, the cost function reaches a lower bound when the first

proxy model �̂�𝑋 discards all its input records. It reaches an upper

bound when all proxy models �̂�𝑋 , �̂�𝑌 , and �̂�𝑍 discard nothing.

Let 𝐶𝑙
and 𝐶𝑢

be the lower and upper bounds of the cost for a

node, respectively. As shown in Equation 3.1, the cost 𝐶 of a proxy

model �̂� is bounded by accuracy 𝛼 , reduction 𝑟 , and selectivity 𝑠 ,

where (i) 𝛼 ∈ [A, 1], (ii) 𝑠 ∈ [0, 1] and (iii) 𝑟 ∈ [0, 1]. 𝐶 increases

when 𝑠 and 𝛼 increase and 𝑟 decreases. To calculate a lower bound

of node 𝑡 at depth 𝑖 assuming the depth of the root is 0, we use the

minimal value of the accuracy 𝛼𝑙
𝑖
= A, the minimal value of the

selectivity 𝑠𝑙
𝑖
= 0, and the maximum value of the reduction 𝑟𝑢

𝑖
= 1.

Similarly, to compute an upper bound of 𝑡 , we use the maximum

value of the accuracy 𝛼𝑢
𝑖
= 1, the maximum value of the selectivity

𝑠𝑢
𝑖
= 1, and the minimal value of the reduction 𝑟 𝑙

𝑖
= 0. Based on the

analysis, we present a lower bound and an upper bound of the cost

𝐶 of a node 𝑡 in Lemma 2. Additionally, a lower bound of the cost

for a plan is the sum of the lower bound of the cost for each node

in the plan, and an upper bound for a plan is the sum of the upper

bound for each node in the plan. That is, the bounds of

∑
𝐶 for a

plan are

∑
𝐶𝑙

and

∑
𝐶𝑢

, respectively.

Lemma 2. For a node 𝑡 of depth 𝑖 , a lower bound of its cost 𝐶𝑡 is

(
𝑖−1∏
𝑗=1

𝑠𝑙𝑗 · 𝛼
𝑙
𝑗) ·

(
𝑐𝑖 + (1 − 𝑟𝑢𝑖) · 𝑐𝑖

)
. (5.1)

Algorithm 2: QO by branch-and-bound pruning

1: procedure bb_pruning(𝑞, A)
2: Construct a search tree based on H from 𝑞;

3: 𝑄 = {𝑞𝜋 |∀𝜋 ∈ H}; visited=∅;
4: for each node 𝑡 in the search tree:

5: 𝐶𝑙 ,𝐶𝑢 ←initialize(𝑡);
6: while |𝑄 | > 1:

7: 𝑡 ← pop_unvisited(𝑄 , visited);
8: �̂�∗, 𝛼∗ ← accuracy_allocation(𝑡,A);
9: update_node(𝑡, �̂�∗, 𝛼∗);
10: visited = visited ∪{𝑡 };
11: sort_and_prune(𝑄,

∑
𝐶𝑙 ,

∑
𝐶𝑢

);

12: return (𝜋, 𝛼) that minimizes

∑
𝐶 .

An upper bound is

(
𝑖−1∏
𝑗=1

𝑠𝑢𝑗 · 𝛼
𝑢
𝑗) ·

(
𝑐𝑖 + (1 − 𝑟 𝑙𝑖) · 𝑐𝑖

)
. (5.2)

Example. In Figure 6, the lower bound of node 1 is the cost of

applying a proxymodel.𝐶𝑙
𝑋
= 𝑐𝑋 using Expression 5.1with𝛼𝑙

𝑋
= A,

𝑠𝑙
𝑋

= 0, and 𝑟𝑢
𝑋

= 1. The upper bound 𝐶𝑢
𝑋
is the cost of a proxy

model 𝑐𝑋 plus that of the ML UDF 𝑐𝑋 with 𝛼𝑢
𝑋

= 1, 𝑠𝑢
𝑋

= 1, and

𝑟 𝑙
𝑋
= 0. For the plan 𝑋𝑌𝑍 in Figure 6, the lower bound of the plan

is 𝐶𝑙
𝑋
+𝐶𝑙

𝑌
+𝐶𝑙

𝑍
, and the upper bound is 𝐶𝑢

𝑋
+𝐶𝑢

𝑌
+𝐶𝑢

𝑍
.

5.2 Branch-and-bound Search
We present a general pruning framework in Algorithm 2. Its main

idea is that the upper and lower bounds can be improved as we col-

lect information during the search process, such as selectivity and

reduction. The search builds necessary proxy models and prunes

the search tree to reduce the optimization overhead. For each node

𝑡 , according to Lemma 2, we initialize the lower and upper bounds

of �̂� using 𝐶𝑙
and 𝐶𝑢

, respectively (lines 4∼ 5). We then progres-

sively build proxy models (lines 6∼11). For each search step, we

find optimal 𝛼 parameters for 𝑡 and prefix nodes using Algorithm 1.

We compute the cost

∑
𝐶 of these nodes after using Algorithm 1,

and tighten the bounds of costs for 𝑡 ’s leaf nodes. The search yields

an order 𝜋 that minimizes the overall cost

∑
𝑖 𝐶 (�̂�𝜋𝑖 , 𝛼𝜋𝑖). We next

explain several specific functions used in the algorithm.

X 𝛼!" = 𝛼!# = 0.92

Y Z

YZ

𝛼$" = 𝛼$# = 0.98

𝛼%" = 1.0, 𝛼%# = 0.9

1

2

4

3

5

X 𝛼!" = 𝛼!# = 0.92

Y Z

YZ

𝛼$" = 𝛼$# = 0.93

𝛼%" = 𝛼%# = 0.95

1

2

4

3

5

Order XYZ:
∑𝐶 ∈ [6, 8]

Order XZY:
∑𝐶 ∈ [2, 8]

Visited Current

Order XYZ:
∑𝐶 ∈ [6, 8]

Order XZY:
∑𝐶 ∈ [5, 5]

✄

(a) The 𝑖&' iteration. (b) The 𝑖 + 1(& iteration.

Pruned

Figure 6: Two iterations in branch-and-bound search on a tree start-
ing from node 1 with A= 0.9. The blue text is updated information
such as accuracies, lower bounds, and upper bounds after calling the
function update_node().

Initialization (line 5): We initialize the lower and upper bounds

for each node according to Lemma 2. The query accuracy

∏
𝛼 in

Equation 3.3 is within [A𝑛, 1]. For example, for the plan 𝑋𝑌𝑍 in

Figure 6, we initialize the lower and upper bounds for each node

with 𝛼𝑙 = A, 𝑠𝑙 = 0, 𝑟𝑢 = 1 and 𝛼𝑢 = 1, 𝑠𝑢 = 1, 𝑟 𝑙 = 0, respectively.

The query accuracy

∏
𝛼 is within [0.93, 1] initially, where 0.9 is

the query target accuracy A.

Choosing the next candidate node. (line 7): We find the first

unvisited tree node 𝑡 from 𝜋 that is in the front of the queue. In Fig-

ure 6(a), 𝜋 = 𝑋𝑍𝑌 is in the front of the queue𝑄 according to sort_-
and_prune(), which will be explained later. pop_unvisited()
yields 𝜋 = 𝑋𝑍𝑌 and node 3, since node 1 has been visited. Similarly,

pop_unvisited() yields 𝜋 = 𝑋𝑍𝑌 and node 5 in Figure 6(b). If

all the nodes for the head plan in the queue have been visited, we

look for the next 𝜋 ∈ 𝑄 .
Tightening cost bounds. (line 8∼line 9): We first call accuracy_-
allocation() to build an optimal proxy models �̂�∗ with an opti-

mal 𝛼∗ from the root till the current node 𝑡 at depth 𝑖 . The update_-

node() function updates 𝛼𝑙 = 𝛼𝑢 = 𝛼∗ for nodes from the root till

𝑡 . Similarly, 𝑠𝑙 = 𝑠𝑢 = 𝑠∗, and 𝑟 𝑙 = 𝑟𝑢 = 𝑟∗. This process improves

the bounds of

∑
𝐶 for plans under node 𝑡 (with untrained �̂�s) and in

turn tightens the query accuracy

∏
𝛼 to [A𝑛−𝑖+1,A]. In Figure 6(a),

for node 3, we call accuracy_allocation() for the sub-query

𝑋𝑍 and find the optimal 𝛼𝑙
𝑋

= 𝛼𝑢
𝑋

= 0.92 and 𝛼𝑙
𝑍
= 𝛼𝑢

𝑍
= 0.98 for

node 1 and node 3, respectively. The update_node() tightens the
query accuracy

∏
𝛼 for the plan 𝑋𝑍𝑌 from [0.93, 1] to [0.92, 0.9],

and tightens the lower and upper bounds of

∑
𝐶 to [2, 8].

Pruning plans. (line 11): After the bounds are updated, we sort
and prune 𝜋 ∈ 𝑄 . The following rules are used to determine the

sort order of 𝜋 as well as to prune unnecessary plans.

• When [∑𝐶𝑙 ,
∑
𝐶𝑢] for two 𝜋 ’s have overlap, the one with

a lower mean cost

∑
𝐶𝑙+∑𝐶𝑢

2
has a higher priority and is

likely to yield more gains. Such a plan should be explored

first. In Figure 6(a), the mean cost for the plan 𝑋𝑍𝑌 is 5,

which is less than that of the plan 𝑋𝑌𝑍 . Therefore, the plan

𝑋𝑍𝑌 has a higher priority than the plan 𝑋𝑌𝑍 .

• When [∑𝐶𝑙 ,
∑
𝐶𝑢] for two 𝜋 ’s have no overlap, we prune

the one with a higher value range from the search tree,

since it provides greater cost. In Figure 6(b), [∑𝐶𝑙 ,
∑
𝐶𝑢]

for the plan 𝑋𝑍𝑌 is lower than that of the plan 𝑋𝑌𝑍 , and

they have no overlap. Then the plan 𝑋𝑌𝑍 is removed from

𝑄 , i.e., the edge connecting node 2 and node 4 is deleted.

The above comparisons are done for each pair of 𝜋 ’s until 𝑄 is

fully sorted. The lower bound and upper bound are equal to the

exact cost once �̂� is built. Pruned 𝜋 ’s are removed from 𝑄 .

5.3 Improvement Using a Fine-grained Tree
The branch-and-bound search discussed above involves generating

labeled samples 𝐿, followed by training classifiers𝑀 and deriving

𝐶 for each node in H. To further speedup the search, we split one

node into two: an 𝐿-node to generate labeled samples, and an𝑀-

node to train classifiers 𝑀 and derive 𝑅 and 𝐶 . An 𝐿-node has to

be placed before its corresponding𝑀-node, i.e., labeling happens

before training. For instance, the node 𝑋 in Figure 7(a) is split into

an 𝐿𝑋 node to generate the labeled sample for �̂�𝑋 and an𝑀𝑋 node

to train the classifier for �̂�𝑋 in Figure 7(b). We call this new tree a

fine-grained search tree H+.
Compared to the original search tree discussed in the previous

section, H+ provides more opportunities to tighten the cost bounds.

For example, we can prune the search tree at an 𝐿-node without

executing its corresponding𝑀-node. The search algorithm is similar

to Algorithm 2, except a new update_node() function. Its update
scheme now depends on the type of node 𝑡 , discussed below.

X 𝐿!

Y

Z

𝑀! 𝐿" 𝐿#

𝑀! 𝐿#

1

2

3

1

2 3 4

5 6… …

(a) (b)

𝐿# 7

Figure 7: (a) A snippet of the search tree in Figure 6; (b) A fine-grained
tree of (a).

𝐿-node. We update the lower and upper bounds of selectivity 𝑠

because we generate labeled samples and compute 𝑠 at 𝐿-node.

For an 𝐿-node 𝑡 , a proxy model �̂� is called available for 𝑡 if its
corresponding 𝑀-node is an ancestor of 𝑡 ; otherwise, �̂� is called

unavailable for 𝑡 . We compute lower and upper bounds of 𝑠𝑡 by

applying all available prefix �̂� and 𝜎 on the raw input to obtain a

labeled sample 𝐿∗𝑡 , and its selectivity is denoted as 𝑠
∗
𝑡 . In Figure 7(b),

�̂�𝑋 is available for node 5 because we build �̂�𝑋 at node 2, which is

an ancestor of node 5, while it is unavailable for node 3 because

𝑀𝑋 is not an ancestor of node 3. The labeled sample 𝐿∗
𝑌
for node

3 is labeled by 𝜎𝑌 after 𝜎𝑋 on the raw input without applying �̂�𝑋 .

Let the selectivity on 𝐿∗
𝑌
be 𝑠∗

𝑌
. We compute 𝐶𝑙

𝑡 and 𝐶
𝑢
𝑡 as follows:

• A lower bound 𝐶𝑙
𝑡 can be computed when its unavailable

proxy models have 𝛼𝑙 = A and discard records that sat-

isfy 𝜎𝑡 from 𝐿∗𝑡 . In this case, the selectivity 𝑠 becomes

(𝑠∗𝑡 − (1 −A)𝑘) /A𝑘
, where 𝑘 is the number of unavailable

prefix proxy models. This selectivity is used to estimate 𝐶𝑙
𝑡

using Expression 5.1. For node 3 in Figure 7(b), we compute

𝐶𝑙
𝑌
using 𝑠𝑙

𝑌
= (𝑠∗

𝑌
− (1 −A))/Awhen the unavailable �̂�𝑋

with 𝛼 = Adiscards records satisfying 𝜎𝑌 from 𝐿∗
𝑌
.

• An upper bound 𝐶𝑢
𝑡 can be computed when unavailable

proxy models do not discard any records in 𝐿∗𝑡 (i.e., 𝛼 = 1.0).

Its selectivity is 𝑠∗𝑡 in this case.We compute𝐶𝑢
𝑡 using 𝑠𝑢𝑡 = 𝑠∗𝑡

in Expression 5.2. In Figure 7(b), at node 3, when �̂�𝑋 is

unavailable and we use 𝛼 = 1.0, the selectivity 𝑠𝑢
𝑌
= 𝑠∗

𝑌
is

used to estimate 𝐶𝑢
𝑌
.

𝑀-node. As in Section 5.2, we call Algorithm 1 to compute 𝛼∗, train
�̂� , and estimate 𝐶 . We also update the bounds for all its ancestor

nodes. In Figure 7(b), after we train �̂�𝑋 for node 5, we update the

selectivity of node 3 by applying �̂�𝑙
𝑋
on its labeled sample 𝐿′

𝑌
.

The above search on the fine-grained tree is efficient, as illus-

trated in our experiments. For a query on the Twitter dataset, the

search algorithm prunes 37% of the nodes on the original search

tree, and 85% of the nodes on the fine-grained tree.

6 EXPERIMENTS
6.1 Setup
Datasets. We used three datasets with text, images, and videos.

Twitter text dataset. It contained 2M tweets from January 2017 to

September 2017 in the United States randomly sampled using the

Twitter sampled stream API [37]. Each tweet was a string with

a maximum of 140 characters. This dataset supported text analy-

sis and retrieval by utilizing various NLP modules such as entity

recognition, sentiment analysis, and part-of-speech (PoS) tagger.

COCO image dataset. COCO [28] was a public dataset collected

online. It contained 123K images and 80 object classes such as

“person”, “bicycle”, and “dog”. Each image was labeled with multiple

objects for their class labels and bounding box positions. The dataset

was used for retrieving images that contained one or more object

classes specified in user queries.

UCF101 video dataset. The UCF101 activity recognition dataset [35]

contained 13K videos collected from YouTube. Each video was la-

beled with one of 101 action categories such as “applying lipstick”

and “baby crawling”. It supported video retrieval using labels gen-

erated by object detection and action recognition models.

Workloads. To our best knowledge, there is no off-the-shelf bench-
mark for ML inference with comprehensive ML operators and predi-

cates. To solve the problem, we generated 10 queries for each dataset

in the experiments. Table 2 illustrates some of them, and Figure 8

shows a sample workflow. The workloads retrieved texts, images,

and videos that matched given query predicates, which were con-

junctions of multiple clauses with different selectivity values. Each

predicate clause was an equality condition on an ML-generated

label column. We refer the readers to a full list of the queries as

well as snapshots of the datasets in [41]. Each query also specified

a target query accuracy A, indicating how much accuracy loss the

user was willing to pay relatively to the original query.

Dataset Q# Query semantics Selectivity Correlation

Twitter

q1

Sentiment(’negative’ or ’neutral’) & PoS Tag-

ger(’VBD’ or ’WRB’ or ’IN’)

0.49 0.55

q2

Sentiment(’negative’ or ’neutral’) & PoS Tag-

ger(’PRP’)

0.35 0.41

COCO

q6

Object detection (person) & (car or chair or

cup or tv or bed or . . .)
0.13 0.99

UCF101

q2

Activity Recognition (archery or balance beam

or biking or . . .) & Object detection (chair or

sports ball or bird or . . .)

0.17 1.00

Table 2: Some of ML queries used in the experiments.

Input Sentiment PoS
Tagger Output

sentiment=
(‘negative’ or

‘neutral’)

tagger =
(‘VBD’or ‘IN’)

Figure 8: A sample ML workflow on the Twitter dataset.

Metrics.Wemeasured (1) the end-to-end total processing time that

included the query optimization, training of necessary models, and

processing the query given an optimized plan; (2) the accuracy of

our query processing relatively to the original ML inference queries;

(3) the query execution cost (milliseconds per record); and (4) the

decomposition of the optimization costs (minutes).

CORE. We implemented a query execution engine and the CORE
optimizer in Python that enabled ML inference queries on various

unstructured texts, images, and videos. We also implemented sev-

eral ML UDFs using the Stanford NLP [31] and spaCy packages for

text analysis, YOLOv3 [33] for object detection in images, and an

activity recognition model [7] for recognizing activities in videos.

To build a proxy model, we generated the labeled sample 𝐿 for

�̂� by pulling initial records from the input, filtering these records

by its condition 𝑑 , and then labeling 𝐿 using its predicate 𝜎 . 𝐿 was

divided into a training set, a testing set, and a validation set. We

re-sampled the training data to ensure a label balance. The classifier

𝑀 for �̂� was trained on the training set and the testing set using

light-weight classification algorithms, such as a linear SVM [15]

and a shallow NN [25]. During training, we leveraged a grid-search

on the F1-score to decide the best hyper-parameters and a cross-

validation to train a classifier using the set of hyper-parameters.

After training 𝑀 , we derived its accuracy vs. reduction curve 𝑅

using the validation set.

Baselines. We compared CORE against the following baseline

approaches. (i)ORIGwas a baseline that ran the original query as it

is. (ii) NS was a baseline based on NoScope [17]. It trained a single

light-weight model and inserted it early in a plan to quickly filter

input records that did not match the query predicate so that the

entire query could be accelerated. (iii) PP (short for Probabilistic

Predicates [30]) built a light-weight filter for each predicate offline

and injected them early in a plan with an independence assumption

of predicates, given an ad-hoc query. The experiments were run on

a c5.4xlarge AWS instance with 280GB SSD storage, 16 vCPUs, and

32GB memory, running a Ubuntu Linux 16.04.

6.2 Effect of Predicate Correlation
To understand the effect of correlations of UDFs in a query, we used

the three datasets and 20 test queries with two or three predicates

for each dataset. These queries were divided by their correlation

score �̂�2
at a cutoff score of 0.2 on the Twitter dataset, 0.9 on the

COCO dataset, and 0.5 on the UCF101 dataset. As a result, each

query was classified as weakly or strongly correlated among the

predicates. Table 3 shows the correlation score.

We collected the execution costs of these weakly and strongly

correlated queries with a query accuracy A = 90%. We ran these

queries using ORIG, NS, PP, and CORE to generate optimal plans,

and tested the execution cost of an optimal plan by executing the

plan on a sample of data. Figure 9 shows the execution costs. From

Figure 9, we can see that (i) NS, PP, and CORE reduced the execu-

tion cost compared toORIG, and (ii) compared to PP,CORE reduced
the execution cost more on strongly correlated queries than weakly

correlated queries. In general, NS improved over ORIG using cheap

filters to quickly discard irrelevant inputs, and PP further boosted

the performance by decomposing the filters according to the pred-

icate clauses. There was still room for improvements for queries

with more correlations and CORE filled this gap as expected.

6.3 Time Reduction of CORE
To study the performance improvements of CORE over existing

solutions, we tested the total times of strongly correlated queries

with A = 90% on the three datasets. For query optimization to

 Weak Strong0
10
20
30
40
50
60

Ex
ec

ut
ion

 C
os

t (
m

s/r
ec

or
d)

ORIG NS PP CORE

(a) Twitter.

 Weak Strong0

50

100

150

200

250

Ex
ec

ut
ion

 C
os

t (
m

s/r
ec

or
d)

ORIG NS PP CORE

(b) COCO.

 Weak Strong0

200

400

600

800

Ex
ec

ut
ion

 C
os

t (
m

s/r
ec

or
d)

ORIG NS PP CORE

(c) UCF101.

Figure 9: Average execution costs over strongly correlated queries and weakly correlated queries on the three datasets, respectively.

Dataset 𝑞′
1

𝑞′
2

𝑞′
3

𝑞′
4

𝑞′
5

𝑞′
6

𝑞′
7

𝑞′
8

𝑞′
9

𝑞′
10

Twitter 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.16 0.16 0.16

COCO 0.87 0.88 0.87 0.87 0.86 0.88 0.87 0.87 0.88 0.88

UCF101 0.40 0.40 0.40 0.40 0.41 0.41 0.41 0.41 0.41 0.41

(a) Weakly correlated queries.

Dataset 𝑞1 𝑞2 𝑞3 𝑞4 𝑞5 𝑞6 𝑞7 𝑞8 𝑞9 𝑞10

Twitter 0.55 0.41 0.55 0.42 0.41 1.00 0.80 0.96 0.80 0.93

COCO 0.99 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99

UCF101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.82 0.82

(b) Strongly correlated queries.

Table 3: The correlation scores for 10 strongly correlated queries
𝑞1 ∼ 𝑞10 (marked as “Strong”) and 10 weakly correlated queries
𝑞′

1
∼ 𝑞′

10
(marked as “Weak”) on the three datasets.

generate an optimal query plan, we used 0.34% of the input data on

the Twitter dataset, 0.84% of the input data on the COCO dataset,

and 14.86% of the input on the UCF101 dataset (due to its smaller

size). After generating the optimal plan, we ran it on the rest of the

input. The total time included the optimization time and the time

of processing all the records. We used the same setting for NS and

PP, which built proxy models online.

Figures 10a, 10c and 10e show the total times of ten queries

in each dataset, and Figures 10b, 10d and 10f show the average

total-time reductions for the ten queries using NS, PP, and CORE
compared to ORIG. We also presented the total time of each indi-

vidual query in the Twitter dataset in Figure 11. These results show

that CORE had a better performance than the baseline approaches

in general. Specifically, CORE achieved up to a 61% reduction on

the Twitter dataset compared to ORIG. For NS and PP, the reduc-
tions were about 44% and 50%, respectively. We observe similar

reductions on other datasets as well. For example, on the COCO

dataset, CORE had a reduction of up to 73% compared to ORIG,
while NS and PP achieved a reduction of 35% and 44%, respectively.

As discussed in Section 2.2, CORE achieved more gains over PP
when the queries had predicates with a stronger correlation.

6.4 Optimization Cost of CORE
To better understand the detailed optimization cost of CORE, we
collected the time to generate labeled samples, the time to train

classifiers, and the time of search frameworks for each query. The

optimizer CORE used multiple threads to label training samples.

Each ML model processing unstructured texts used ten threads in

ORIG NS PP CORE0
200
400
600
800

1000
1200
1400

To
ta

l T
im

e
(m

in)

ORIG
NS

PP
CORE

(a) Total time (Twitter).

NS PP CORE0%
10%
20%
30%
40%
50%

To
ta

l T
im

e
Re

du
cti

on

(b) Time reduction (Twitter).

ORIG NS PP CORE0
100
200
300
400
500

To
ta

l T
im

e
(m

in)

ORIG
NS

PP
CORE

(c) Total time (COCO).

NS PP CORE0%
10%
20%
30%
40%
50%
60%

To
ta

l T
im

e
Re

du
cti

on
(d) Time reduction (COCO).

ORIG NS PP CORE0

50

100

150

200

To
ta

l T
im

e
(m

in)

ORIG
NS

PP
CORE

(e) Total time (UCF101).

NS PP CORE0%

10%

20%

30%

40%
To

ta
l T

im
e

Re
du

cti
on

(f) Time reduction (UCF101).

Figure 10: The total time over ten queries for each dataset using
CORE and baseline approaches. A= 90%. For (a), (c), and (e), we show
the 1

𝑠𝑡 and 99
𝑡ℎ percentiles on the bars and 1

𝑠𝑡 quartile, median, and
3
𝑟𝑑 quartile on the boxes. For (b), (d) and (f), we present the average
total time reductions relative to ORIG.

parallel. The YOLOv3 model and the image feature model used two

processes in parallel, and the activity recognition model used six

processes in parallel. During the phase of building proxymodels, the

size of labeled sample 𝐿 was empirically set to 2, 000. The training

set, testing set, and validation set were split in a 6:2:2 ratio. We

used scikit-learn to train a linear SVM classifier𝑀 on the labeled

sample for text analytic queries, and used keras to train a shallow

NN classifier for analytic queries on images and videos.

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10
0

200
400
600
800

1000
1200
1400

To
ta

l T
im

e
(m

in)

ORIG NS PP CORE

Figure 11: The total time of each query in the Twitter dataset using ORIG, NS, PP, and CORE.

Table 4 shows the results of the ten queries over each dataset,

including the time reduction compared to ORIG. On the Twitter

dataset, the optimization time was 0.70% of the total time, and the

total time reduction was 49.87% on the average. On the COCO

dataset, the optimization time was 5.67% of the total time, and the

total time reduction was 66.07% on the average. UCF101 was rela-

tively smaller, and 14.86% of the data was used for optimization. The

optimization time was 21.80% of the total time, and the total time

reduction was 49.49% on the average. Overall, the query optimiza-

tion cost of CORE was a small portion of the total processing time,

and it achieved significant performance improvement compared

to ORIG. When the dataset was small (e.g., the UDF101 dataset) or

queries had many ML operators and predicates (e.g., 𝑞8 and 𝑞10 on

the Twitter dataset), the query optimization costs were larger.

Labeling Training Searching QO QO Total Total Time

Dataset ID #preds Time Time Time Time Time Time Reduction

(min) (min) (min) (min) pct. (min) (%)

Twitter q1 2 0.93 0.10 0.17 1.20 0.16% 763 45.56

Twitter q2 2 1.22 0.09 0.14 1.46 0.25% 581 60.99

Twitter q8 3 1.53 0.75 3.28 5.58 0.73% 764 44.77

Twitter q10 3 1.76 0.75 2.93 5.47 0.77% 712 48.26

Twitter Avg. 2.5 1.84 0.44 2.61 4.91 0.70% 700 49.87

COCO Avg. 2 6.00 2.06 0.24 8.30 5.67% 173 66.07

UCF101 Avg. 2 23.40 0.08 0.20 23.68 21.80% 110 49.49

Table 4: Optimization costs and the total processing time for ten
queries over each dataset using CORE with A= 90%. The “labeling
time” is the time to generate labeled samples. The “training time”
is the time to train classifiers. The “searching time” is the elapsed
time for the search framework. The “QO time” is the total time of
the labeling, training and searching times. The “QO Time pct.” is the
percentage of the QO time over the total processing time. Total Time
Reduction = (ORIG-CORE)/ORIG.

6.5 Effectiveness of CORE Components
CORE searched an optimal query plan in both the accuracy space

A and the order spaceH. We evaluated the effectiveness of different

components in CORE using two variants, namely CORE-a and

CORE-h. CORE-a represented the setting with the reordering step

disabled during optimization and constrained the search space to

solely A (Section 4). It used the input-query order and derived an

optimal set of accuracy values in A using Algorithm 1. CORE-h
applied Algorithm 1, and exhaustively searched an optimal order

in H instead of performing the pruning in Algorithm 2.

We ran ten queries for each dataset using CORE-a, CORE-h,
and CORE with A = 90%, and collected the execution costs for

CORE-a CORE-h CORE0
5

10
15
20
25
30

Ex
ec

ut
ion

 C
os

t (
m

s/r
ec

or
d)

(a) Execution cost (Twitter).

CORE-a CORE-h CORE0

2

4

6

8

10

12

Op
tim

iza
tio

n
Co

st
(m

in)

(b) Optimization cost (Twitter).

CORE-a CORE-h CORE0
20
40
60
80

100
120
140

Ex
ec

ut
ion

 C
os

t (
m

s/r
ec

or
d)

(c) Execution cost (COCO).

CORE-a CORE-h CORE0
2
5
8

10
12
15
18
20

Op
tim

iza
tio

n
Co

st
(m

in)
(d) Optimization cost (COCO).

CORE-a CORE-h CORE0
100
200
300
400
500
600
700
800

Ex
ec

ut
ion

 C
os

t (
m

s/r
ec

or
d)

(e) Execution cost (UCF101).

CORE-a CORE-h CORE0

5

10

15

20

25

30

Op
tim

iza
tio

n
Co

st
(m

in)

(f) Optimization cost (UCF101).

Figure 12: The execution costs and average optimization costs for
queries over three datasets using CORE, CORE-a and CORE-h.

Labeling

Time (min)

Training

Time (min)

Searching

Time (min)

QO Time

(min)

QO Time

pct.(%)

CORE-a 1.37 0.15 1.78 3.30 0.38

CORE-h 6.51 0.57 4.69 11.78 1.74

CORE 1.84 0.44 2.61 4.91 0.70

Table 5: Optimization costs of CORE variants on the Twitter dataset.

optimized plans and the average optimization costs to generate

optimal plans. Figure 12 shows the results. We can see that CORE-a
had the worse execution cost compared to CORE because CORE-a
did not use the optimal order. CORE had similar execution costs to

CORE-h, but CORE-h had much larger query optimization costs.

Table 5, shows the average optimization cost including labeling,

training, and searching using CORE-a, CORE-h, and CORE. We

can see that CORE reduced the labeling, training and searching

times compared to CORE-h. This result indicated that the branch-

and-bound search algorithm in CORE successfully pruned some

nodes in the tree and reduced the optimization overhead. In gen-

eral, the branch-and-bound search algorithm found the optimal

order. Therefore, both the Algorithm 1 for A and Algorithm 2 for

H successfully accelerated the ML inference process.

6.6 Scalability
We evaluated the scalability of CORE by increasing the number of

records in the Twitter dataset. We started with 0.2 million tweets

and gradually increased the data size to 2 million tweets. We ran

the ten queries with A = 90% using ORIG, NS, PP, and CORE,
and collected the total processing times at different data sizes. Fig-

ure 13 shows the average total processing time using ORIG, NS,
PP, and CORE. We also presented the total times for two example

queries using CORE at different data sizes. The results show that

CORE scaled up well, and outperformed the other three baseline

approaches at all data sizes.

0.4 0.8 1.2 1.6 2.0
of tweets (million)

0
200
400
600
800

1000
1200
1400
1600

To
ta

l T
im

e
(m

in)

ORIG
NS

PP
CORE

0.4 0.8 1.2 1.6 2.0
of tweets (million)

0
100
200
300
400
500
600
700
800

To
ta

l T
im

e
(m

in)

q1 q2

Figure 13: (Left) The average total processing time (including opti-
mization cost) using CORE, ORIG, NS, and PP on ten queries over the
Twitter dataset with different input sizes. (Right) The total times of
two sample queries: 𝑞1 and 𝑞2, with different input sizes.

6.7 Effect of Target Query Accuracy
We evaluated the impact of the target accuracy A on CORE by

increasing A. We started from A= 90%, and linearly increased it to

A= 98%. We collected the execution costs of optimized plans for

the ten queries over the Twitter dataset using ORIG, NS, PP, and
CORE with different target accuracy values. Figure 14 left shows

the average execution costs for the ten queries using ORIG, NS,
PP, and CORE. We also presented the execution costs for three

example queries using CORE with different target accuracy values

in Figure 14 right. The results indicated that CORE outperformed

ORIG, NS, and PP in different accuracy settings. Moreover, the

execution costs increased for all the baselines when the target

accuracy increased. In addition, Table 6 shows the percentage of

the query optimization time relative to the total processing time

in the same setting. Similar to the observations in Section 6.3, the

query optimization in CORE with different accuracy targets still

had a smaller overhead relative to the total processing time.

90 92 94 96 98
Query Accuracy (%)

0
5

10
15
20
25
30
35

Ex
ec

ut
ion

 C
os

t (
m

s/r
ec

or
d)

ORIG
NS

PP
CORE

90 92 94 96 98
Query Accuracy (%)

0

5

10

15

20

Ex
ec

ut
ion

 C
os

t (
m

s/r
ec

or
d)

q6 q4 q2

Figure 14: (Left) The average execution costs of optimized plans for
ten queries over the Twitter dataset with different Avalues. (Right)
The execution costs of three sample queries: 𝑞2, 𝑞4, and 𝑞6, with
different target accuracies.

QO cost

(min) / pct

A= 90% A= 92% A= 94% A= 96% A= 98%

𝑞2 1.50/0.11% 1.54/0.11% 1.50/0.11% 1.48/0.11% 1.48/0.11%

𝑞6 4.73/0.35% 5.28/0.39% 8.31/0.61% 6.03/0.45% 3.83/0.28%

avg. 4.57/0.36% 4.83/0.38% 5.07/0.40% 4.30/0.34% 3.24/0.25%

Table 6: The optimization costs for 𝑞2 and 𝑞6 with different Avalues.
Each cell contains the QO costs and the QO percentage relative to
the total query-processing cost.

6.8 Effect of Sample Size Used in Training
To better understand the effect of the labeled sample size on CORE,
we varied the sample size from 1K to 5K. Table 7 shows the execu-

tion costs for two example queries and the average execution costs

(in milliseconds per tuple) over the 10 queries with different sample

sizes on the Twitter dataset with A = 90%. The results showed

that the execution costs decreased and the query optimization time

percentage increased when the labeled sample size increased. When

we set the sample size to 500, the query accuracy A= 90% could

no longer be guaranteed and decreased to 82% on average.

Cost /

QO pct

Sample

size=1K

Sample

size=2K

Sample

size=3K

Sample

size=4K

Sample

size=5K

𝑞2 16.8/0.1% 15.8/0.1% 16.3/0.2% 16.7/0.3% 15.9/0.4%

𝑞3 21.9/0.1% 21.5/0.1% 21.5/0.2% 21.0/0.3% 19.6/0.5%

avg. 20.0/0.2% 19.3/0.4% 19.2/0.9% 19.4/1.0% 19.0/1.4%

Table 7: Execution costs of 𝑞2 and 𝑞3 with different sample sizes.
Each cell contains an execution cost and percentage of the QO cost.

7 CONCLUSIONS
We proposed a novel query optimizer, CORE, to accelerate ML

inference queries. It improved state-of-the-art techniques by relax-

ing the independence assumption among query predicates. CORE
incurs only a small overhead by leveraging a branch-and-bound

search algorithm to prune the space of candidate filters and reusing

intermediate results. A thorough experimental evaluation showed

that CORE significantly reduced the ML inference execution cost.

ACKNOWLEDGMENTS
This work was partially supported by the National Key R&D Pro-

gram of China (No. 2020AAA0103903), the NSFC (No. 61732004),

the USA NSF award IIS-2107150, and the CSC studentship.

REFERENCES
[1] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. 2005. Geometric

approximation via coresets. Combinatorial and computational geometry 52 (2005),

1–30.

[2] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jen-

nifer Widom. 2004. Adaptive Ordering of Pipelined Stream Filters. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, June 13-18,
2004. ACM, Paris, France, 407–418.

[3] Shaofeng Cai, Gang Chen, Beng Chin Ooi, and Jinyang Gao. 2019. Model slic-

ing for supporting complex analytics with elastic inference cost and resource

constraints. Proceedings of the VLDB Endowment 13, 2 (2019), 86–99.
[4] Zhaowei Cai, Mohammad J. Saberian, and Nuno Vasconcelos. 2015. Learning

Complexity-Aware Cascades for Deep Pedestrian Detection. In 2015 IEEE Inter-
national Conference on Computer Vision, ICCV 2015, December 7-13, 2015. IEEE
Computer Society, Santiago, Chile, 3361–3369.

[5] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate Query

Processing: No Silver Bullet. In Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD Conference 2017, May 14-19, 2017. ACM,

Chicago, IL, USA, 511–519.

[6] Surajit Chaudhuri and Kyuseok Shim. 1999. Optimization of Queries with User-

Defined Predicates. ACM Trans. Database Syst. 24, 2 (1999), 177–228.
[7] Xianshun Chen. 2020. Activity Recognition. https://github.com/chen0040/keras-

video-classifier. last accessed: 2020-01-22.

[8] Izrail Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. 2014. Table of
integrals, series, and products. Academic press, Cambridge, MA.

[9] Sona Hasani, Saravanan Thirumuruganathan, Abolfazl Asudeh, Nick Koudas,

and Gautam Das. 2018. Efficient construction of approximate ad-hoc ML models

through materialization and reuse. Proceedings of the VLDB Endowment 11, 11
(2018), 1468–1481.

[10] Joseph M. Hellerstein and Michael Stonebraker. 1993. Predicate Migration:

Optimizing Queries with Expensive Predicates. In Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, May 26-28, 1993. ACM
Press, Washington, DC, USA, 267–276.

[11] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-

tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from

Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005.
[12] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík, Shivaram Venkataraman,

Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons, and Onur Mutlu. 2018.

Focus: Querying Large Video Datasets with Low Latency and Low Cost. In 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018,
October 8-10, 2018. USENIX Association, Carlsbad, CA, USA, 269–286.

[13] Nacim Ihaddadene and Chabane Djeraba. 2008. Real-time crowd motion analysis.

In 19th International Conference on Pattern Recognition (ICPR 2008), December
8-11, 2008. IEEE Computer Society, Tampa, Florida, USA, 1–4.

[14] Ihab F. Ilyas, VolkerMarkl, Peter J. Haas, Paul Brown, andAshraf Aboulnaga. 2004.

CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.

In Proceedings of the ACM SIGMOD International Conference on Management of
Data, June 13-18, 2004. ACM, Paris, France, 647–658.

[15] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, August 20-23, 2006. ACM, Philadelphia, PA, USA, 217–226.

[16] Daniel Kang, Peter Bailis, and Matei Zaharia. 2019. BlazeIt: Optimizing Declara-

tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.

Proc. VLDB Endow. 13, 4 (2019), 533–546.
[17] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.

NoScope: Optimizing Deep CNN-Based Queries over Video Streams at Scale.

PVLDB 10, 11 (2017), 1586–1597.

[18] Daniel Kang, Edward Gan, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.

2020. Approximate Selection with Guarantees using Proxies. Proc. VLDB Endow.
13, 11 (2020), 1990–2003.

[19] Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, and Matei Zaharia.

2020. Task-agnostic Indexes for Deep Learning-based Queries over Unstructured

Data. CoRR abs/2009.04540 (2020).

[20] Walter H Kohler and Kenneth Steiglitz. 1974. Characterization and theoretical

comparison of branch-and-bound algorithms for permutation problems. Journal
of the ACM (JACM) 21, 1 (1974), 140–156.

[21] Sanjay Krishnan, Adam Dziedzic, and Aaron J. Elmore. 2019. DeepLens: To-

wards a Visual Data Management System. In 9th Biennial Conference on Innova-
tive Data Systems Research, CIDR 2019, January 13-16, 2019, Online Proceedings.
www.cidrdb.org, Asilomar, CA, USA.

[22] Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Sebastian Breß,

Tilmann Rabl, and Volker Markl. 2019. An intermediate representation for

optimizing machine learning pipelines. Proceedings of the VLDB Endowment 12,
11 (2019), 1553–1567.

[23] Iosif Lazaridis and Sharad Mehrotra. 2007. Optimization of multi-version expen-

sive predicates. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, June 12-14, 2007. ACM, Beijing, China, 797–808.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[25] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.

Howard, Wayne E. Hubbard, and Lawrence D. Jackel. 1989. Handwritten Digit

Recognitionwith a Back-PropagationNetwork. InAdvances in Neural Information
Processing Systems 2, [NIPS Conference, November 27-30, 1989]. Morgan Kaufmann,

Denver, Colorado, USA, 396–404.

[26] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua. 2015. A

convolutional neural network cascade for face detection. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, June 7-12, 2015. IEEE
Computer Society, Boston, MA, USA, 5325–5334.

[27] Xiaoxiao Li, Ziwei Liu, Ping Luo, Chen Change Loy, and Xiaoou Tang. 2017. Not

All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer

Cascade. In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, July 21-26, 2017. IEEE Computer Society, Honolulu, HI, USA, 6459–

6468.

[28] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common

Objects in Context. In Computer Vision - ECCV 2014 - 13th European Conference,
September 6-12, 2014, Proceedings, Part V (Lecture Notes in Computer Science),
Vol. 8693. Springer, Zurich, Switzerland, 740–755.

[29] John DC Little, Katta G Murty, Dura W Sweeney, and Caroline Karel. 1963. An

algorithm for the traveling salesman problem. Operations research 11, 6 (1963),

972–989.

[30] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri. 2018.

Accelerating Machine Learning Inference with Probabilistic Predicates. In Pro-
ceedings of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, June 10-15, 2018. ACM, Houston, TX, USA, 1493–1508.

[31] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven

Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language

Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, June 22-27, 2014, System Demonstrations.
The Association for Computer Linguistics, Baltimore, MD, USA, 55–60.

[32] Venkatesh N. Murthy, Vivek Singh, Terrence Chen, R. Manmatha, and Dorin

Comaniciu. 2016. Deep Decision Network for Multi-class Image Classification.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
June 27-30, 2016. IEEE Computer Society, Las Vegas, NV, USA, 2240–2248.

[33] Joseph Redmon and Ali Farhadi. 2018. YOLOv3: An Incremental Improvement.

CoRR abs/1804.02767 (2018).

[34] Astrid Rheinländer, Ulf Leser, and Goetz Graefe. 2017. Optimization of Complex

Dataflows with User-Defined Functions. ACM Comput. Surv. 50, 3 (2017), 38:1–
38:39.

[35] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. 2012. UCF101:

A Dataset of 101 Human Actions Classes From Videos in The Wild. CoRR
abs/1212.0402 (2012).

[36] Alexander Toshev and Christian Szegedy. 2014. DeepPose: Human Pose Esti-

mation via Deep Neural Networks. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2014, June 23-28, 2014. IEEE Computer Society,

Columbus, OH, USA, 1653–1660.

[37] Twitter API 2019. Twitter API. https://developer.twitter.com/en/docs/twitter-api.

last accessed: 2019-01-01.

[38] Paul A. Viola and Michael J. Jones. 2001. Rapid Object Detection using a Boosted

Cascade of Simple Features. In 2001 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR 2001), with CD-ROM, 8-14 December
2001. IEEE Computer Society, Kauai, HI, USA, 511–518.

[39] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck Khim

Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Rafiki: machine learning as

an analytics service system. Proceedings of the VLDB Endowment 12, 2 (2018),
128–140.

[40] Xin Wang, Yujia Luo, Daniel Crankshaw, Alexey Tumanov, Fisher Yu, and

Joseph E. Gonzalez. 2018. IDK Cascades: Fast Deep Learning by Learning not to

Overthink. In Proceedings of the Thirty-Fourth Conference on Uncertainty in Arti-
ficial Intelligence, UAI 2018, August 6-10, 2018. AUAI Press, Monterey, California,

USA, 580–590.

[41] Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean Wang.

2022. Correlative Proxy Models. https://github.com/ZhihuiYangCS/CorrProxies/

wiki/Queries-and-Datasets. last accessed: 2022-02-22.

[42] Zhihui Yang, Zuozhi Wang, Yicong Huang, Yao Lu, Chen Li, and X. Sean

Wang. 2022. Optimizing Machine Learning Inference Queries with Correla-

tive Proxy Models (Technical Report). http://texera.ics.uci.edu/pdf/proxymodel/

proxymodel-tech-report.pdf. last accessed: 2022-06-09.

https://github.com/chen0040/keras-video-classifier
https://github.com/chen0040/keras-video-classifier
https://developer.twitter.com/en/docs/twitter-api
https://github.com/ZhihuiYangCS/CorrProxies/wiki/Queries-and-Datasets
https://github.com/ZhihuiYangCS/CorrProxies/wiki/Queries-and-Datasets
http://texera.ics.uci.edu/pdf/proxymodel/proxymodel-tech-report.pdf
http://texera.ics.uci.edu/pdf/proxymodel/proxymodel-tech-report.pdf

	Abstract
	1 Introduction
	1.1 Related Work

	2 proxy models
	2.1 Background
	2.2 Impact of Correlations

	3 CORE Overview
	3.1 System Architecture
	3.2 Formulation of Optimization Problem

	4 CORE: Accuracy Allocation
	4.1 A Basic Approach and its Challenge
	4.2 Search Framework
	4.3 Reusing Samples to Reduce Labeling Costs
	4.4 Reusing Classifiers to Reduce Training Costs

	5 CORE: Reordering Proxy Models
	5.1 Bounded Cost
	5.2 Branch-and-bound Search
	5.3 Improvement Using a Fine-grained Tree

	6 experiments
	6.1 Setup
	6.2 Effect of Predicate Correlation
	6.3 Time Reduction of CORE
	6.4 Optimization Cost of CORE
	6.5 Effectiveness of CORE Components
	6.6 Scalability
	6.7 Effect of Target Query Accuracy
	6.8 Effect of Sample Size Used in Training

	7 conclusions
	Acknowledgments
	References

